Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelis P. Dullemond is active.

Publication


Featured researches published by Cornelis P. Dullemond.


The Astrophysical Journal | 2001

Passive Irradiated Circumstellar Disks with an Inner Hole

Cornelis P. Dullemond; C. Dominik; A. Natta

A model for irradiated dust disks around Herbig Ae stars is proposed. The model is based on the flaring disk model given by Chiang and Goldreich in 1997, but with the central regions of the disk removed. The inner rim of the disk is puffed up and is much hotter than the rest of the disk because it is directly exposed to the stellar flux. If located at the dust evaporation radius, its reemitted flux produces a conspicuous bump in the spectral energy distribution (SED) that peaks at 2-3 μm. We propose that this emission is the explanation for the near-infrared bump observed in the SEDs of Herbig Ae stars. We study for which stellar parameters this bump would be observable and find that it is the case for Herbig Ae stellar parameters but not for T Tauri stars, confirming what is found from the observations. We also study the effects of the shadow cast by the inner rim over the rest of the flaring disk. The shadowed region can be quite large, and under some circumstances the entire disk may lie in the shadow. This shadowed region will be much cooler than an unshadowed flaring disk, since its only heating sources are radial radiative diffusion and possible indirect sources of irradiation. Under certain special circumstances the shadowing effect can suppress, or even completely eliminate, the 10 μm emission feature from the spectrum, which might explain the anomalous SEDs of some isolated Herbig Ae stars in the recent sample of Meeus and colleagues. At much larger radii the disk emerges from the shadow and continues as a flaring disk toward the outer edge. The emission from the inner rim contributes significantly to the irradiation of this flaring disk. The complete semianalytical model, including structure of the inner edge, the shadowed region, and the flared outer part, is described in detail in this paper, and we show examples of the general behavior of the model for varying parameters.


The Astrophysical Journal | 2011

Resolved Images of Large Cavities in Protoplanetary Transition Disks

Sean M. Andrews; David J. Wilner; Catherine Espaillat; A. M. Hughes; Cornelis P. Dullemond; M. K. McClure; Chunhua Qi; Joanna M. Brown

Circumstellar disks are thought to experience a rapid transition phase in their evolution that can have a considerable impact on the formation and early development of planetary systems. We present new and archival high angular resolution (03 40-75 AU) Submillimeter Array (SMA) observations of the 880 μm (340 GHz) dust continuum emission from 12 such transition disks in nearby star-forming regions. In each case, we directly resolve a dust-depleted disk cavity around the central star. Using two-dimensional Monte Carlo radiative transfer calculations, we interpret these dust disk structures in a homogeneous, parametric model framework by reproducing their SMA continuum visibilities and spectral energy distributions. The cavities in these disks are large (R cav = 15-73 AU) and substantially depleted of small (~μm-sized) dust grains, although their mass contents are still uncertain. The structures of the remnant material at larger radii are comparable to normal disks. We demonstrate that these large cavities are relatively common among the millimeter-bright disk population, comprising at least 1 in 5 (20%) of the disks in the bright half (and ≥26% of the upper quartile) of the millimeter luminosity (disk mass) distribution. Utilizing these results, we assess some of the physical mechanisms proposed to account for transition disk structures. As has been shown before, photoevaporation models do not produce the large cavity sizes, accretion rates, and disk masses representative of this sample. A sufficient decrease of the dust optical depths in these cavities by particle growth would be difficult to achieve: substantial growth (to meter sizes or beyond) must occur in large (tens of AU) regions of low turbulence without also producing an abundance of small particles. Given those challenges, we suggest instead that the observations are most commensurate with dynamical clearing due to tidal interactions with low-mass companions—very young (~1 Myr) brown dwarfs or giant planets on long-period orbits.


Science | 2013

A Major Asymmetric Dust Trap in a Transition Disk

Nienke van der Marel; Ewine F. van Dishoeck; S. Bruderer; Til Birnstiel; Paola Pinilla; Cornelis P. Dullemond; Tim A. van Kempen; M. Schmalzl; Joanna M. Brown; Gregory J. Herczeg; Geoffrey S. Mathews; Vincent C. Geers

From Dust Grains to Planets Almost 900 extrasolar planets have been identified, but we still struggle to understand exactly how planets form. Using data from the Atacama Large Millimeter Array, van der Marel et al. (p. 1199; see the Perspective by Armitage) report a highly asymmetric distribution of millimeter-sized grains surrounding a young star. Modeling suggests that these particles—the material from which planets form—are being trapped within a protoplanetary disk by an anticyclonic vortex. Localized concentration of large grains within a protoplanetary disk is thought to be a step in planet formation. Radio interferometry observations reveal a highly asymmetric distribution of millimeter-sized grains surrounding a young star. [Also see Perspective by Armitage] The statistics of discovered exoplanets suggest that planets form efficiently. However, there are fundamental unsolved problems, such as excessive inward drift of particles in protoplanetary disks during planet formation. Recent theories invoke dust traps to overcome this problem. We report the detection of a dust trap in the disk around the star Oph IRS 48 using observations from the Atacama Large Millimeter/submillimeter Array (ALMA). The 0.44-millimeter–wavelength continuum map shows high-contrast crescent-shaped emission on one side of the star, originating from millimeter-sized grains, whereas both the mid-infrared image (micrometer-sized dust) and the gas traced by the carbon monoxide 6-5 rotational line suggest rings centered on the star. The difference in distribution of big grains versus small grains/gas can be modeled with a vortex-shaped dust trap triggered by a companion.


Astronomy and Astrophysics | 2010

The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? - I. Mapping the zoo of laboratory collision experiments

Carsten Güttler; Jürgen Blum; Andras Zsom; Chris W. Ormel; Cornelis P. Dullemond

Context. The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far, so that a physical model of the dust evolution in protoplanetary disks is still missing. Aims. We intend to map the parameter space for the collisional interaction of arbitrarily porous dust aggregates. This parameter space encompasses the dust-aggregate masses, their porosities and the collision velocity. With such a complete mapping of the collisional outcomes of protoplanetary dust aggregates, it will be possible to follow the collisional evolution of dust in a protoplanetary disk environment. Methods. We use literature data, perform laboratory experiments, and apply simple physical models to get a complete picture of the collisional interaction of protoplanetary dust aggregates. Results. We found four different kinds of sticking, two kinds of bouncing, and three kinds of fragmentation as possible outcomes in collisions among protoplanetary dust aggregates. Our best collision model distinguishes between porous and compact dust. We also differentiate between collisions among similar-sized and different-sized bodies. All in all, eight combinations of porosity and mass ratio can be discerned. For each of these cases, we present a complete collision model for dust-aggregate masses between 10 −12 and 10 2 g and collision velocities in the range of 10 −4 ... 10 4 cm s −1 for arbitrary porosities. This model comprises the collisional outcome, the mass(es) of the resulting aggregate(s) and their porosities. Conclusions. We present the first complete collision model for protoplanetary dust. This collision model can be used for the determination of the dust-growth rate in protoplanetary disks.


The Astrophysical Journal | 2006

c2d Spitzer IRS Spectra of Disks around T Tauri Stars. I. Silicate Emission and Grain Growth

Jacqueline E. Kessler-Silacci; J.-C. Augereau; Cornelis P. Dullemond; Vincent Geers; Fred Lahuis; Neal J. Evans; Ewine F. van Dishoeck; Geoffrey A. Blake; A. C. A. Boogert; Joanna M. Brown; Jes K. Jorgensen; Claudia Knez; Klaus M. Pontoppidan

Infrared ~5-35 μm spectra for 40 solar mass T Tauri stars and 7 intermediate-mass Herbig Ae stars with circumstellar disks were obtained using the Spitzer Space Telescope as part of the c2d IRS survey. This work complements prior spectroscopic studies of silicate infrared emission from disks, which were focused on intermediate-mass stars, with observations of solar mass stars limited primarily to the 10 μm region. The observed 10 and 20 μm silicate feature strengths/shapes are consistent with source-to-source variations in grain size. A large fraction of the features are weak and flat, consistent with micron-sized grains indicating fast grain growth (from 0.1 to 1.0 μm in radius). In addition, approximately half of the T Tauri star spectra show crystalline silicate features near 28 and 33 μm, indicating significant processing when compared to interstellar grains. A few sources show large 10-to-20 μm ratios and require even larger grains emitting at 20 μm than at 10 μm. This size difference may arise from the difference in the depth into the disk probed by the two silicate emission bands in disks where dust settling has occurred. The 10 μm feature strength versus shape trend is not correlated with age or Hα equivalent width, suggesting that some amount of turbulent mixing and regeneration of small grains is occurring. The strength versus shape trend is related to spectral type, however, with M stars showing significantly flatter 10 μm features (larger grain sizes) than A/B stars. The connection between spectral type and grain size is interpreted in terms of the variation in the silicate emission radius as a function of stellar luminosity, but could also be indicative of other spectral-type-dependent factors (e.g., X-rays, UV radiation, and stellar/disk winds).


Astronomy and Astrophysics | 2004

Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

Christoph Leinert; R. van Boekel; L. B. F. M. Waters; O. Chesneau; Fabien Malbet; R. Köhler; W. Jaffe; Thorsten Ratzka; Anne Dutrey; Thomas Preibisch; U. Graser; Eric J. Bakker; G. Chagnon; W. D. Cotton; C. Dominik; Cornelis P. Dullemond; Annelie W. Glazenborg-Kluttig; Andreas Glindemann; T. Henning; Karl-Heinz Hofmann; J. de Jong; Rainer Lenzen; S. Ligori; B. Lopez; Jeff Meisner; S. Morel; Francesco Paresce; Jan-Willem Pel; Isabelle Percheron; G. Perrin

We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wave- length of 10 µm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 µm to 13.5 µm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 µm are found to be from 1 AU to 10 AU. The 10 µm sizes of our sample stars correlate with the slope of the 10-25 µm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different ge- ometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irra- diated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way.


Astronomy and Astrophysics | 2012

Trapping dust particles in the outer regions of protoplanetary disks

Paola Pinilla; T. Birnstiel; Luca Ricci; Cornelis P. Dullemond; A. L. Uribe; L. Testi; A. Natta

Aims. We attempt to explain grain growth to mm sized particles and their retention in the outer regions of protoplanetary disks, as observed at sub-mm and mm wavelengths, by investigating whether strong inhomogeneities in the gas density profiles can decelerate excessive radial drift and help the dust particles to grow. Methods. We use coagulation/fragmentation and disk-structure models, to simulate the evolution of dust in a bumpy surface density profile, which we mimic with a sinusoidal disturbance. For different values of the amplitude and length scale of the bumps, we investigate the ability of this model to produce and retain large particles on million-year timescales. In addition, we compare the pressure inhomogeneities considered in this work with the pressure profiles that come from magnetorotational instability. Using the Common Astronomy Software Applications ALMA simulator, we study whether there are observational signatures of these pressure inhomogeneities that can be seen with ALMA. Results. We present the conditions required to trap dust particles and the corresponding calculations predicting the spectral slope in the mm-wavelength range, to compare with current observations. Finally, we present simulated images using different antenna configurations of ALMA at different frequencies, to show that the ring structures will be detectable at the distances of either the Taurus Auriga or Ophiucus star-forming regions.


Astronomy and Astrophysics | 2003

Grain growth in the inner regions of Herbig Ae/Be star disks

R. van Boekel; L. B. F. M. Waters; C. Dominik; J. Bouwman; A. de Koter; Cornelis P. Dullemond; Francesco Paresce

We present new mid-infrared spectroscopy of the emission from warm circumstellar dust grains in Herbig Ae/Be stars. Our survey significantly extends the sample that was studied by Bouwman et al. (2001). We find a correla- tion between the strength of the silicate feature and its shape. We interpret this as evidence for the removal of small (0.1m) grains from the disk surface while large (1-2m) grains persist. If the evolution of the grain size distribution is dominated by gravitational settling, large grains are expected to disappear first, on a timescale which is much shorter than the typical age of our programme stars. Our observations thus suggest a continuous replenishment of micron sized grains at the disk surface. If the grain replenishment is due to the dredge-up of dust from the disk interior, the mineralogy we observe is representative of the bulk composition of dust in these stars.


The Astrophysical Journal | 2010

Evolutionary Signatures in the Formation of Low-Mass Protostars. II. Toward Reconciling Models and Observations

Michael M. Dunham; Neal J. Evans; Susan Terebey; Cornelis P. Dullemond; Chadwick H. Young

A long-standing problem in low-mass star formation is the luminosity problem, whereby protostars are underluminous compared to the accretion luminosity expected both from theoretical collapse calculations and arguments based on the minimum accretion rate necessary to form a star within the embedded phase duration. Motivated by this luminosity problem, we present a set of evolutionary models describing the collapse of low-mass, dense cores into protostars. We use as our starting point the evolutionary model following the inside-out collapse of a singular isothermal sphere as presented by Young & Evans. We calculate the radiative transfer of the collapsing core throughout the full duration of the collapse in two dimensions. From the resulting spectral energy distributions, we calculate standard observational signatures (L bol, T bol, L bol/L smm) to directly compare to observations. We incorporate several modifications and additions to the original Young & Evans model in an effort to better match observations with model predictions; we include (1) the opacity from scattering in the radiative transfer, (2) a circumstellar disk directly in the two-dimensional radiative transfer, (3) a two-dimensional envelope structure, taking into account the effects of rotation, (4) mass-loss and the opening of outflow cavities, and (5) a simple treatment of episodic mass accretion. We find that scattering, two-dimensional geometry, mass-loss, and outflow cavities all affect the model predictions, as expected, but none resolve the luminosity problem. On the other hand, we find that a cycle of episodic mass accretion similar to that predicted by recent theoretical work can resolve this problem and bring the model predictions into better agreement with observations. Standard assumptions about the interplay between mass accretion and mass loss in our model give star formation efficiencies consistent with recent observations that compare the core mass function and stellar initial mass function. Finally, the combination of outflow cavities and episodic mass accretion reduces the connection between observational class and physical stage to the point where neither of the two commonly used observational signatures (T bol and L bol/L smm) can be considered reliable indicators of physical stage.


Science | 2005

The Onset of Planet Formation in Brown Dwarf Disks

Daniel Apai; Ilaria Pascucci; Jeroen Bouwman; A. Natta; Thomas Henning; Cornelis P. Dullemond

The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub–micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.

Collaboration


Dive into the Cornelis P. Dullemond's collaboration.

Top Co-Authors

Avatar

C. Dominik

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Neal J. Evans

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Geoffrey A. Blake

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Henning

Schiller International University

View shared research outputs
Top Co-Authors

Avatar

A. Juhász

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge