Cory L. Ahonen
Dartmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cory L. Ahonen.
Journal of Experimental Medicine | 2004
Brian P. O'Connor; Vanitha S. Raman; Loren D. Erickson; W. James Cook; Lehn K. Weaver; Cory L. Ahonen; Ling Li Lin; George T. Mantchev; Richard J. Bram; Randolph J. Noelle
Long-lived humoral immunity is manifested by the ability of bone marrow plasma cells (PCs) to survive for extended periods of time. Recent studies have underscored the importance of BLyS and APRIL as factors that can support the survival of B lineage lymphocytes. We show that BLyS can sustain PC survival in vitro, and this survival can be further enhanced by interleukin 6. Selective up-regulation of Mcl-1 in PCs by BLyS suggests that this α-apoptotic gene product may play an important role in PC survival. Blockade of BLyS, via transmembrane activator and cyclophilin ligand interactor–immunoglobulin treatment, inhibited PC survival in vitro and in vivo. Heightened expression of B cell maturation antigen (BCMA), and lowered expression of transmembrane activator and cyclophilin ligand interactor and BAFF receptor in PCs relative to resting B cells suggests a vital role of BCMA in PC survival. Affirmation of the importance of BCMA in PC survival was provided by studies in BCMA−/− mice in which the survival of long-lived bone marrow PCs was impaired compared with wild-type controls. These findings offer new insights into the molecular basis for the long-term survival of PCs.
Journal of Experimental Medicine | 2004
Cory L. Ahonen; Christie L. Doxsee; Sean M. McGurran; Tony R. Riter; William F. Wade; Richard J. Barth; John P. Vasilakos; Randolph J. Noelle; Ross M. Kedl
Toll-like receptors are important in the activation of innate immunity, and CD40 is a molecule critical for many T and B cell responses. Whereas agonists for either pathway have been used as vaccine adjuvants, we show that a combination of Toll-like receptor (TLR)7 and CD40 agonists synergize to stimulate CD8+ T cell responses 10–20-fold greater than the use of either agonist alone. Antigen-specific CD8+ T cells elicited from combination CD40/TLR7 treatment demonstrated both lytic activities and interferon (IFN)γ production and an enhanced secondary response to antigenic challenge. Agonists for TLRs 2/6, 3, 4, and 9 also synergized with CD40 stimulation, demonstrating that synergy with the CD40 pathway is a property of TLR-derived stimuli in general. The CD8+ T cell expansion induced by CD40/TLR7 triggering was independent of CD4+ T cells, IFNγ, and IL-12 but dependent on B7-mediated costimulation and surprisingly on type I IFN. These studies provide the rational basis for the use of TLR and CD40 agonists together as essential adjuvants to optimize vaccines designed to elicit protective or therapeutic immunity.
Journal of Experimental Medicine | 2011
Lili Wang; Rotem Rubinstein; Janet Lines; Anna Wasiuk; Cory L. Ahonen; Yanxia Guo; Li-Fan Lu; David C. Gondek; Yan-Yan Wang; Roy A. Fava; Andras Fiser; Steve C. Almo; Randolph J. Noelle
VISTA suppresses T cell proliferation and cytokine production and can influence autoimmunity and antitumor responses in mice.
Journal of Experimental Medicine | 2010
Esther Lutgens; Dirk Lievens; Linda Beckers; Erwin Wijnands; Oliver Soehnlein; Alma Zernecke; Tom Seijkens; David Engel; Jack P.M. Cleutjens; Anna M. Keller; Shalin H. Naik; Louis Boon; Ziad Mallat; Cory L. Ahonen; Randolph J. Noelle; Menno P.J. de Winther; Mat J.A.P. Daemen; Erik A.L. Biessen; Christian Weber
The CD40–CD40 ligand (CD40L) signaling axis plays an important role in immunological pathways. Consequently, this dyad is involved in chronic inflammatory diseases, including atherosclerosis. Inhibition of CD40L in apolipoprotein E (Apoe)–deficient (Apoe−/−) mice not only reduced atherosclerosis but also conferred a clinically favorable plaque phenotype that was low in inflammation and high in fibrosis. Blockade of CD40L may not be therapeutically feasible, as long-term inhibition will compromise systemic immune responses. Conceivably, more targeted intervention strategies in CD40 signaling will have less deleterious side effects. We report that deficiency in hematopoietic CD40 reduces atherosclerosis and induces features of plaque stability. To elucidate the role of CD40–tumor necrosis factor receptor-associated factor (TRAF) signaling in atherosclerosis, we examined disease progression in mice deficient in CD40 and its associated signaling intermediates. Absence of CD40-TRAF6 but not CD40-TRAF2/3/5 signaling abolishes atherosclerosis and confers plaque fibrosis in Apoe−/− mice. Mice with defective CD40-TRAF6 signaling display a reduced blood count of Ly6Chigh monocytes, an impaired recruitment of Ly6C+ monocytes to the arterial wall, and polarization of macrophages toward an antiinflammatory regulatory M2 signature. These data unveil a role for CD40–TRAF6, but not CD40–TRAF2/3/5, interactions in atherosclerosis and establish that targeting specific components of the CD40–CD40L pathway harbors the potential to achieve therapeutic effects in atherosclerosis.
Nature Immunology | 2002
Cory L. Ahonen; Eric M. Manning; Loren D. Erickson; Brian P. O'Connor; Evan F. Lind; Steven S. Pullen; Marilyn R. Kehry; Randolph J. Noelle
Affinity maturation of the immune response and the generation of long-lived bone marrow (BM) plasma cells are hallmarks of CD40-dependent, thymus-dependent (TD) humoral immunity. Through disruption of the tumor necrosis factor receptor (TNFR)-associated factor 6 (TRAF6)-binding site within the CD40 cytoplasmic domain, we selectively ablated affinity maturation and the generation of plasma cells after immunization. Mutagenesis of both the TRAF6 and TRAF2-TRAF3 sites was essential for arresting germinal center formation in response to immunization. CD40-induced B cell proliferation and early immunoglobulin production occurred even when all TRAF sites were ablated. These studies show that specific CD40-TRAF associations control well defined aspects of humoral immunity. In addition, they define the roles that TRAF-dependent and TRAF-independent pathways play in regulating antigen-driven B cell differentiation.
Blood | 2008
Marjo M. P. C. Donners; Linda Beckers; Dirk Lievens; Imke C. A. Munnix; Johan W. M. Heemskerk; Ben J. A. Janssen; Erwin Wijnands; Jack P.M. Cleutjens; Alma Zernecke; Christian Weber; Cory L. Ahonen; Ulrike Benbow; Andrew C. Newby; Randolph J. Noelle; Mat J.A.P. Daemen; Esther Lutgens
We investigated the role of CD40 and CD40L in neointima formation and identified the downstream CD40-signaling intermediates (tumor necrosis factor [TNF]-receptor associated factors [TRAF]) involved. Neointima formation was induced in wild-type, CD40(-/-), CD40L(-/-), and in CD40(-/-) mice that contained a CD40 transgene with or without mutations at the CD40-TRAF2,3&5, TRAF6, or TRAF2,3,5&6 binding sites. Compared with wild-type mice, CD40(-/-) mice showed a significant decrease in neointima formation with increased collagen deposition and decreased inflammatory cell infiltration. Neointima formation was also impaired in wild-type mice reconstituted with CD40(-/-) bone marrow. In vitro, the capacity of CD40(-/-) leukocytes to adhere to the endothelium was reduced. Ligated carotid arteries of CD40(-/-) mice showed a smaller total vessel volume and an impaired remodeling capacity, reflected by decreased gelatinolytic/collagenolytic activity. Comparable results were found in mice with defects in CD40-TRAF6 and CD40-TRAF 2/3/5&6 binding, but not in mice with defects in CD40-TRAF2/3&5 binding. Neointima formation and vascular remodeling in CD40-receptor-deficient mice is impaired, due to a decreased inflammatory cell infiltration and matrix-degrading protease activity, with CD40-TRAF6 signaling as the key regulator. This identifies the CD40-TRAF6 axis as a potential therapeutic target in vascular disease.
Blood | 2008
Cory L. Ahonen; Anna Wasiuk; Shinichiro Fuse; Mary Jo Turk; Marc S. Ernstoff; Arief A. Suriawinata; James D. Gorham; Ross M. Kedl; Edward J. Usherwood; Randolph J. Noelle
Identification of Toll-like receptors (TLRs) and their ligands, and tumor necrosis factor-tumor necrosis factor receptor (TNF-TNFR) pairs have provided the first logical, hypothesis-based strategies to molecularly concoct adjuvants to elicit potent cell-mediated immunity via activation of innate and adaptive immunity. However, isolated activation of one immune pathway in the absence of others can be toxic, ineffective, and detrimental to long-term, protective immunity. Effective engineered vaccines must include agents that trigger multiple immunologic pathways. Here, we report that combinatorial use of CD40 and TLR agonists as a cancer vaccine, compared with monotherapy, elicits high frequencies of self-reactive CD8(+) T cells, potent tumor-specific CD8(+) memory, CD8(+) T cells that efficiently infiltrate the tumor-burdened target organ; therapeutic efficacy; heightened ratios of CD8(+) T cells to FoxP3(+) cells at the tumor site; and reduced hepatotoxicity. These findings provide intelligent strategies for the formulation of multifactorial vaccines to achieve maximal efficacy in cancer vaccine trials in humans.
Journal of Experimental Medicine | 2012
Elizabeth Nowak; Victor C. de Vries; Anna Wasiuk; Cory L. Ahonen; Kathryn A. Bennett; Isabelle Le Mercier; Dae-Gon Ha; Randolph J. Noelle
Tryptophan hydroxylase deficiency in mast cells breaks allograft tolerance, induces tumor remission, and intensifies neuroinflammation.
Journal of Immunology | 2008
Evan F. Lind; Cory L. Ahonen; Anna Wasiuk; Yoko Kosaka; Burkhard Becher; Kathy A. Bennett; Randolph J. Noelle
NF-κB-inducing kinase (NIK) is responsible for activation of the non-canonical p100 processing pathway of NF-κB activation. This kinase has been shown to be critical for activation of this pathway after signaling through several TNF family members including CD40. The functional importance of this pathway in CD40 and TLR-induced dendritic cell (DC) differentiation was studied in vivo in the alymphoplasia (Aly) mouse. The Aly mouse expresses a mutant NIK molecule that prohibits the induction of the non-canonical pathway. We show that while MHC class II presentation and in vivo migration of Aly DCs is intact, these cells are unable to cross-prime CD8+ T cells to exogenous Ag. Gene expression array analysis of DCs matured in vivo indicates multiple defects in Ag processing pathways after maturation and provide a global view of the genes that are regulated by the NF-κB2 pathway in DCs. These experiments indicate a possible role for NIK in mediating cross-priming of soluble Ag. In addition, our findings explain the profound immune unresponsiveness of the Aly mouse.
Journal of Clinical Oncology | 2010
Krishna S. Gunturu; Kenneth R. Meehan; Todd A. MacKenzie; Todd S. Crocenzi; David F. McDermott; Edward J. Usherwood; Kim Margolin; Nancy A. Crosby; Michael B. Atkins; Mary Jo Turk; Cory L. Ahonen; Shinichiro Fuse; Joseph I. Clark; Jan L. Fisher; Randolph J. Noelle; Marc S. Ernstoff
PURPOSE Recovery of lymphocyte populations after lymphocyte depletion is implicated in therapeutic immune pathways in animal models and in patients with cancer. We sought to evaluate the effects of chemotherapy-induced lymphodepletion followed by granulocyte-macrophage colony-stimulating factor (GM-CSF) and high-dose interleukin-2 (IL-2) therapy on clinical response and the recovery of lymphocyte subcompartments in patients with metastatic melanoma. PATIENTS AND METHODS This was a two-stage phase II trial design. Patients with measurable metastatic melanoma were treated with intravenous cyclophosphamide (60 mg/kg, days 1 and 2) and fludarabine (25 mg/m(2), day 3 through 7) followed by two 5-day courses of intravenous high-dose bolus IL-2 (600,000 U/kg; days 8 through 12 and 21 through 25). GM-CSF (250 microg/m(2)/d beginning day 8) was given until granulocyte recovery. Lymphocyte recovery profiles were determined by flow cytometric phenotyping at regular intervals, and clinical outcome was assessed by Response Evaluation Criteria in Solid Tumors (RECIST). RESULTS The trial was stopped at the end of stage 1 with four of 18 objective responses noted. Twelve patients had detailed lymphocyte subcompartments evaluated. After lymphodepletion, we observed an induction of regulatory cells (CD4+ T regulatory cells; CD8+ T suppressor cells) and of T memory cells (CD8+ T central memory cells; T effector memory RA+ cells). Expansion of circulating melanoma-specific CD8(+) cells was observed in one of four HLA-A2-positive patients. CONCLUSION Chemotherapy-induced lymphodepletion modulates the homeostatic repopulation of the lymphocyte compartment and influences recovering lymphocyte subpopulations. Clinical activity seems similar to standard high-dose aldesleukin alone.