Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Courtney C. Murdock is active.

Publication


Featured researches published by Courtney C. Murdock.


Global Change Biology | 2013

Temperature variation makes ectotherms more sensitive to climate change

Krijn P. Paaijmans; Rebecca L. Heinig; Rebecca A. Seliga; Justine I. Blanford; Simon Blanford; Courtney C. Murdock; Matthew B. Thomas

Ectotherms are considered to be particularly vulnerable to climate warming. Descriptions of habitat temperatures and predicted changes in climate usually consider mean monthly, seasonal or annual conditions. Ectotherms, however, do not simply experience mean conditions, but are exposed to daily fluctuations in habitat temperatures. Here, we highlight how temperature fluctuation can generate ‘realized’ thermal reaction (fitness) norms that differ from the ‘fundamental’ norms derived under standard constant temperatures. Using a mosquito as a model organism, we find that temperature fluctuation reduces rate processes such as development under warm conditions, increases processes under cool conditions, and reduces both the optimum and the critical maximum temperature. Generalizing these effects for a range of terrestrial insects reveals that prevailing daily fluctuations in temperature should alter the sensitivity of species to climate warming by reducing ‘thermal safety margins’. Such effects of daily temperature dynamics have generally been ignored in the climate change literature.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Native microbiome impedes vertical transmission of Wolbachia in Anopheles mosquitoes

Grant L. Hughes; Brittany L. Dodson; Rebecca M. Johnson; Courtney C. Murdock; Hitoshi Tsujimoto; Yasutsugu Suzuki; Alyssa A. Patt; Long Cui; Carlos W. Nossa; Rhiannon M. Barry; Joyce M. Sakamoto; Emily Anne Hornett; Jason L. Rasgon

Significance Factors influencing Wolbachia transfer into new species remain poorly understood. This is important as Wolbachia can influence speciation and is being developed as a novel arthropod-borne disease control approach. We show the native microbiota of Anopheles impede vertical transmission of Wolbachia. Antibiotic microbiome perturbation enables Wolbachia transmission in two Anopheles species. Mosquitoes with altered microbiomes do not exhibit blood meal-induced mortality associated with Wolbachia infection, suggesting that mosquitoes are killed by interactions between Wolbachia and other bacteria present in the mosquito. We identified Asaia as the bacterium responsible for inhibiting Wolbachia transmission, and partially responsible for blood meal-induced mortality. These results suggest that microbial interactions profoundly affect the host, and that microbiome incompatibility may influence distribution of Wolbachia in arthropods. Over evolutionary time, Wolbachia has been repeatedly transferred between host species contributing to the widespread distribution of the symbiont in arthropods. For novel infections to be maintained, Wolbachia must infect the female germ line after being acquired by horizontal transfer. Although mechanistic examples of horizontal transfer exist, there is a poor understanding of factors that lead to successful vertical maintenance of the acquired infection. Using Anopheles mosquitoes (which are naturally uninfected by Wolbachia) we demonstrate that the native mosquito microbiota is a major barrier to vertical transmission of a horizontally acquired Wolbachia infection. After injection into adult Anopheles gambiae, some strains of Wolbachia invade the germ line, but are poorly transmitted to the next generation. In Anopheles stephensi, Wolbachia infection elicited massive blood meal-induced mortality, preventing development of progeny. Manipulation of the mosquito microbiota by antibiotic treatment resulted in perfect maternal transmission at significantly elevated titers of the wAlbB Wolbachia strain in A. gambiae, and alleviated blood meal-induced mortality in A. stephensi enabling production of Wolbachia-infected offspring. Microbiome analysis using high-throughput sequencing identified that the bacterium Asaia was significantly reduced by antibiotic treatment in both mosquito species. Supplementation of an antibiotic-resistant mutant of Asaia to antibiotic-treated mosquitoes completely inhibited Wolbachia transmission and partly contributed to blood meal-induced mortality. These data suggest that the components of the native mosquito microbiota can impede Wolbachia transmission in Anopheles. Incompatibility between the microbiota and Wolbachia may in part explain why some hosts are uninfected by this endosymbiont in nature.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Complex effects of temperature on mosquito immune function

Courtney C. Murdock; Krijn P. Paaijmans; Andrew S. Bell; Jonas G. King; Julián F. Hillyer; Andrew F. Read; Matthew B. Thomas

Over the last 20 years, ecological immunology has provided much insight into how environmental factors shape host immunity and host–parasite interactions. Currently, the application of this thinking to the study of mosquito immunology has been limited. Mechanistic investigations are nearly always conducted under one set of conditions, yet vectors and parasites associate in a variable world. We highlight how environmental temperature shapes cellular and humoral immune responses (melanization, phagocytosis and transcription of immune genes) in the malaria vector, Anopheles stephensi. Nitric oxide synthase expression peaked at 30°C, cecropin expression showed no main effect of temperature and humoral melanization, and phagocytosis and defensin expression peaked around 18°C. Further, immune responses did not simply scale with temperature, but showed complex interactions between temperature, time and nature of immune challenge. Thus, immune patterns observed under one set of conditions provide little basis for predicting patterns under even marginally different conditions. These quantitative and qualitative effects of temperature have largely been overlooked in vector biology but have significant implications for extrapolating natural/transgenic resistance mechanisms from laboratory to field and for the efficacy of various vector control tools.


Nature Reviews Microbiology | 2012

Rethinking vector immunology: the role of environmental temperature in shaping resistance.

Courtney C. Murdock; Krijn P. Paaijmans; Diana Cox-Foster; Andrew F. Read; Matthew B. Thomas

Recent ecological research has revealed that environmental factors can strongly affect insect immunity and influence the outcome of host–parasite interactions. To date, however, most studies examining immune function in mosquitoes have ignored environmental variability. We argue that one such environmental variable, temperature, influences both vector immunity and the parasite itself. As temperatures in the field can vary greatly from the ambient temperature in the laboratory, it will be essential to take temperature into account when studying vector immunology.


PLOS Neglected Tropical Diseases | 2017

Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models

Erin A. Mordecai; Jeremy M. Cohen; Michelle V. Evans; Prithvi Gudapati; Leah R. Johnson; Catherine A. Lippi; Kerri Miazgowicz; Courtney C. Murdock; Jason R. Rohr; Sadie J. Ryan; Van M. Savage; Marta S. Shocket; Anna Stewart Ibarra; Matthew B. Thomas; Daniel Weikel

Recent epidemics of Zika, dengue, and chikungunya have heightened the need to understand the seasonal and geographic range of transmission by Aedes aegypti and Ae. albopictus mosquitoes. We use mechanistic transmission models to derive predictions for how the probability and magnitude of transmission for Zika, chikungunya, and dengue change with mean temperature, and we show that these predictions are well matched by human case data. Across all three viruses, models and human case data both show that transmission occurs between 18–34°C with maximal transmission occurring in a range from 26–29°C. Controlling for population size and two socioeconomic factors, temperature-dependent transmission based on our mechanistic model is an important predictor of human transmission occurrence and incidence. Risk maps indicate that tropical and subtropical regions are suitable for extended seasonal or year-round transmission, but transmission in temperate areas is limited to at most three months per year even if vectors are present. Such brief transmission windows limit the likelihood of major epidemics following disease introduction in temperate zones.


Scientific Reports | 2015

Temperature alters Plasmodium blocking by Wolbachia

Courtney C. Murdock; Simon Blanford; Grant L. Hughes; Jason L. Rasgon; Matthew B. Thomas

Very recently, the Asian malaria vector (Anopheles stephensi) was stably transinfected with the wAlbB strain of Wolbachia, inducing refractoriness to the human malaria parasite Plasmodium falciparum. However, conditions in the field can differ substantially from those in the laboratory. We use the rodent malaria P. yoelii, and somatically transinfected An. stephensi as a model system to investigate whether the transmission blocking potential of wAlbB is likely to be robust across different thermal environments. wAlbB reduced malaria parasite prevalence and oocyst intensity at 28°C. At 24°C there was no effect on prevalence but a marked increase in oocyst intensity. At 20°C, wAlbB had no effect on prevalence or intensity. Additionally, we identified a novel effect of wAlbB that resulted in reduced sporozoite development across temperatures, counterbalancing the oocyst enhancement at 24°C. Our results demonstrate complex effects of temperature on the Wolbachia-malaria interaction, and suggest the impacts of transinfection might vary across diverse environments.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

‘Manipulation’ without the parasite: altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites

Lauren J. Cator; Justin George; Simon Blanford; Courtney C. Murdock; Thomas C. Baker; Andrew F. Read; Matthew B. Thomas

Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this ‘manipulation phenotype’ to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yoelii as a model system, we demonstrate that mosquitoes with early stage infections (i.e. non-infectious oocysts) exhibit reduced attraction to a human host, whereas those with late-stage infections (i.e. infectious sporozoites) exhibit increased attraction. These stage-specific changes in behaviour were paralleled by changes in the responsiveness of mosquito odourant receptors, providing a possible neurophysiological mechanism for the responses. However, we also found that both the behavioural and neurophysiological changes could be generated by immune challenge with heat-killed Escherichia coli and were thus not tied explicitly to the presence of malaria parasites. Our results support the hypothesis that the feeding behaviour of female mosquitoes is altered by Plasmodium, but question the extent to which this is owing to active manipulation by malaria parasites of host behaviour.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Complex environmental drivers of immunity and resistance in malaria mosquitoes

Courtney C. Murdock; Lillian L. Moller-Jacobs; Matthew B. Thomas

Considerable research effort has been directed at understanding the genetic and molecular basis of mosquito innate immune mechanisms. Whether environmental factors interact with these mechanisms to shape overall resistance remains largely unexplored. Here, we examine how changes in mean ambient temperature, diurnal temperature fluctuation and time of day of infection affected the immunity and resistance of Anopheles stephensi to infection with Escherichia coli. We used quantitative PCR to estimate the gene expression of three immune genes in response to challenge with heat-killed E. coli. We also infected mosquitoes with live E. coli and ran bacterial growth assays to quantify host resistance. Both mosquito immune parameters and resistance were directly affected by mean temperature, diurnal temperature fluctuation and time of day of infection. Furthermore, there was a suite of complex two- and three-way interactions yielding idiosyncratic phenotypic variation under different environmental conditions. The results demonstrate mosquito immunity and resistance to be strongly influenced by a complex interplay of environmental variables, challenging the interpretation of the very many mosquito immune studies conducted under standard laboratory conditions.


Integrative and Comparative Biology | 2014

The History of Ecoimmunology and Its Integration with Disease Ecology

Patrick M. Brock; Courtney C. Murdock; Lynn B. Martin

Ecoimmunology is an example of how fruitful integrative approaches to biology can be. Since its emergence, ecoimmunology has sparked constructive debate on a wide range of topics, from the molecular mechanics of immune responses to the role of immunity in shaping the evolution of life histories. To complement the symposium Methods and Mechanisms in Ecoimmunology and commemorate the inception of the Division of Ecoimmunology and Disease Ecology within the Society for Integrative and Comparative Biology, we appraise the origins of ecoimmunology, with a focus on its continuing and valuable integration with disease ecology. Arguably, the greatest contribution of ecoimmunology to wider biology has been the establishment of immunity as an integral part of organismal biology, one that may be regulated to maximize fitness in the context of costs, constraints, and complex interactions. We discuss historical impediments and ongoing progress in ecoimmunology, in particular the thorny issue of what ecoimmunologists should, should not, or cannot measure, and what novel contributions ecoimmunologists have made to the understanding of host-parasite interactions. Finally, we highlight some areas to which ecoimmunology is likely to contribute in the near future.


Integrative and Comparative Biology | 2016

Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments

Sylvain Pincebourde; Courtney C. Murdock; Mathew Vickers; Michael W. Sears

When predicting the response of organisms to global change, models use measures of climate at a coarse resolution from general circulation models or from downscaled regional models. Organisms, however, do not experience climate at such large scales. The climate heterogeneity over a landscape and how much of that landscape an organism can sample will determine ultimately the microclimates experienced by organisms. This past few decades has seen an important increase in the number of studies reporting microclimatic patterns at small scales. This synthesis intends to unify studies reporting microclimatic heterogeneity (mostly temperature) at various spatial scales, to infer any emerging trends, and to discuss the causes and consequences of such heterogeneity for organismal performance and with respect to changing land use patterns and climate. First, we identify the environmental drivers of heterogeneity across the various spatial scales that are pertinent to ectotherms. The thermal heterogeneity at the local and micro-scales is mostly generated by the architecture or the geometrical features of the microhabitat. Then, the thermal heterogeneity experienced by individuals is modulated by behavior. Second, we survey the literature to quantify thermal heterogeneity from the micro-scale up to the scale of a landscape in natural habitats. Despite difficulties in compiling studies that differ much in their design and aims, we found that there is as much thermal heterogeneity across micro-, local and landscape scales, and that the temperature range is large in general (>9 °C on average, and up to 26 °C). Third, we examine the extent to which urban habitats can be used to infer the microclimatic patterns of the future. Urban areas generate globally drier and warmer microclimatic patterns and recent evidence suggest that thermal traits of ectotherms are adapted to them. Fourth, we explore the interplay between microclimate heterogeneity and the behavioral thermoregulatory abilities of ectotherms in setting their overall performance. We used a random walk framework to show that the thermal heterogeneity allows a more precise behavioral thermoregulation and a narrower temperature distribution of the ectotherm compared to less heterogeneous microhabitats. Finally, we discuss the potential impacts of global change on the fine scale mosaics of microclimates. The amplitude of change may differ between spatial scales. In heterogeneous microhabitats, the amplitude of change at micro-scale, caused by atmospheric warming, can be substantial while it can be limited at the local and landscape scales. We suggest that the warming signal will influence species performance and biotic interactions by modulating the mosaic of microclimates.

Collaboration


Dive into the Courtney C. Murdock's collaboration.

Top Co-Authors

Avatar

Matthew B. Thomas

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew F. Read

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge