Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Melinda A. Brindley is active.

Publication


Featured researches published by Melinda A. Brindley.


Development | 2016

Zika virus infection disrupts neurovascular development and results in postnatal microcephaly with brain damage

Qiang Shao; Stephanie Herrlinger; Si-Lu Yang; Fan Lai; Julie M. Moore; Melinda A. Brindley; Jian-Fu Chen

Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse brains, we found that ZIKV infection leads to postnatal growth restriction including microcephaly. In addition to cell cycle arrest and apoptosis of NPCs, ZIKV infection causes massive neuronal death and axonal rarefaction, which phenocopy fetal brain abnormalities in humans. Importantly, ZIKV infection leads to abnormal vascular density and diameter in the developing brain, resulting in a leaky blood–brain barrier (BBB). Massive neuronal death and BBB leakage indicate brain damage, which is further supported by extensive microglial activation and astrogliosis in virally infected brains. Global gene analyses reveal dysregulation of genes associated with immune responses in virus-infected brains. Thus, our data suggest that ZIKV triggers a strong immune response and disrupts neurovascular development, resulting in postnatal microcephaly with extensive brain damage. Highlighted article: A postnatal model for ZIKV infection reveals blood-brain barrier leakage, neuronal death, apoptosis and cell cycle arrest of NPCs, leading to microcephaly with brain damage in ZIKV-infected pups.


Viruses | 2017

Zika Virus Exhibits Lineage-Specific Phenotypes in Cell Culture, in Aedes aegypti Mosquitoes, and in an Embryo Model

Katherine Willard; Leah R. Demakovsky; Blanka Tesla; Forrest Goodfellow; Steven L. Stice; Courtney C. Murdock; Melinda A. Brindley

Zika virus (ZIKV) has quietly circulated in Africa and Southeast Asia for the past 65 years. However, the recent ZIKV epidemic in the Americas propelled this mosquito-borne virus to the forefront of flavivirus research. Based on historical evidence, ZIKV infections in Africa were sporadic and caused mild symptoms such as fever, skin rash, and general malaise. In contrast, recent Asian-lineage ZIKV infections in the Pacific Islands and the Americas are linked to birth defects and neurological disorders. The aim of this study is to compare replication, pathogenicity, and transmission efficiency of two historic and two contemporary ZIKV isolates in cell culture, the mosquito host, and an embryo model to determine if genetic variation between the African and Asian lineages results in phenotypic differences. While all tested isolates replicated at similar rates in Vero cells, the African isolates displayed more rapid viral replication in the mosquito C6/36 cell line, yet they exhibited poor infection rates in Aedes aegypti mosquitoes compared to the contemporary Asian-lineage isolates. All isolates could infect chicken embryos; however, infection with African isolates resulted in higher embryo mortality than infection with Asian-lineage isolates. These results suggest that genetic variation between ZIKV isolates can significantly alter experimental outcomes.


Development | 2017

The African Zika virus MR-766 is more virulent and causes more severe brain damage than current Asian lineage and dengue virus

Qiang Shao; Stephanie Herrlinger; Ya-Nan Zhu; Mei Yang; Forrest Goodfellow; Steven L. Stice; Xiaopeng Qi; Melinda A. Brindley; Jian-Fu Chen

The Zika virus (ZIKV) has two lineages, Asian and African, and their impact on developing brains has not been compared. Dengue virus (DENV) is a close family member of ZIKV and co-circulates with ZIKV. Here, we performed intracerebral inoculation of embryonic mouse brains with dengue virus 2 (DENV2), and found that DENV2 is sufficient to cause smaller brain size due to increased cell death in neural progenitor cells (NPCs) and neurons. Compared with the currently circulating Asian lineage of ZIKV (MEX1-44), DENV2 grows slower, causes less neuronal death and fails to cause postnatal animal death. Surprisingly, our side-by-side comparison uncovered that the African ZIKV isolate (MR-766) is more potent at causing brain damage and postnatal lethality than MEX1-44. In comparison with MEX1-44, MR-766 grows faster in NPCs and in the developing brain, and causes more pronounced cell death in NPCs and neurons, resulting in more severe neuronal loss. Together, these results reveal that DENV2 is sufficient to cause smaller brain sizes, and suggest that the ZIKV African lineage is more toxic and causes more potent brain damage than the Asian lineage. Highlighted Article: African Zika virus MR-766 causes more cell death in NPCs and neurons in the developing brain, leading to more potent brain damage than Asian strain MEX1-44 and dengue virus.


Nature Communications | 2018

Promotion of virus assembly and organization by the measles virus matrix protein

Zunlong Ke; Joshua D. Strauss; Cheri M. Hampton; Melinda A. Brindley; Rebecca S. Dillard; Fredrick Leon; Kristen M. Lamb; Richard K. Plemper; Elizabeth R. Wright

Measles virus (MeV) remains a major human pathogen, but there are presently no licensed antivirals to treat MeV or other paramyxoviruses. Here, we use cryo-electron tomography (cryo-ET) to elucidate the principles governing paramyxovirus assembly in MeV-infected human cells. The three-dimensional (3D) arrangement of the MeV structural proteins including the surface glycoproteins (F and H), matrix protein (M), and the ribonucleoprotein complex (RNP) are characterized at stages of virus assembly and budding, and in released virus particles. The M protein is observed as an organized two-dimensional (2D) paracrystalline array associated with the membrane. A two-layered F–M lattice is revealed suggesting that interactions between F and M may coordinate processes essential for MeV assembly. The RNP complex remains associated with and in close proximity to the M lattice. In this model, the M lattice facilitates the well-ordered incorporation and concentration of the surface glycoproteins and the RNP at sites of virus assembly.Virus assembly is technically challenging to study. Here the authors use cryo-electron tomography of measles virus-infected human cells to determine native-state virus structure and they locate well-ordered M lattices that organize viral glycoproteins, RNP, and drive assembly.


Journal of Virology | 2017

Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization

Marissa Acciani; Jacob T. Alston; Guohui Zhao; Hayley Reynolds; Afroze M. Ali; Brian Xu; Melinda A. Brindley

ABSTRACT Lassa virus (LASV) is an enveloped RNA virus endemic to West Africa and responsible for severe cases of hemorrhagic fever. Virus entry is mediated by the glycoprotein complex consisting of a stable-signal peptide, a receptor-binding subunit, GP1, and a viral-host membrane fusion subunit, GP2. Several cellular receptors can interact with the GP1 subunit and mediate viral entry, including alpha-dystroglycan (αDG) and lysosome-associated membrane protein 1 (LAMP1). In order to define the regions within GP1 that interact with the cellular receptors, we implemented insertional mutagenesis, carbohydrate shielding, and alanine scanning mutagenesis. Eighty GP constructs were engineered and evaluated for GP1-GP2 processing, surface expression, and the ability to mediate cell-to-cell fusion after low-pH exposure. To examine virus-to-cell entry, 49 constructs were incorporated onto vesicular stomatitis virus (VSV) pseudoparticles and transduction efficiencies were monitored in HAP1 and HAP1-ΔDAG1 cells that differentially produce the αDG cell surface receptor. Seven constructs retained efficient transduction in HAP1-ΔDAG1 cells yet poorly transduced HAP1 cells, suggesting that they are involved in αDG utilization. Residues H141, N146, F147, and Y150 cluster at the predicted central core of the trimeric interface and are important for GP-αDG interaction. Additionally, H92A-H93A, 150HA, 172HA, and 230HA displayed reduced transduction in both HAP1 and HAP1-ΔDAG1 cells, despite efficient cell-to-cell fusion activity. These mutations may interfere with interactions with the endosomal receptor LAMP1 or interfere at another stage in entry that is common to both cell lines. Insight gained from these data can aid in the development of more-effective entry inhibitors by blocking receptor interactions. IMPORTANCE Countries in which Lassa virus is endemic, such as Nigeria, Sierra Leone, Guinea, and Liberia, usually experience a seasonal outbreak of the virus from December to March. Currently, there is neither a preventative vaccine nor a therapeutic available to effectively treat severe Lassa fever. One way to thwart virus infection is to inhibit interaction with cellular receptors. It is known that the GP1 subunit of the Lassa glycoprotein complex plays a critical role in receptor recognition. Our results highlight a region within the Lassa virus GP1 protein that interacts with the cellular receptor alpha-dystroglycan. This information may be used for future development of new Lassa virus antivirals.


bioRxiv | 2018

Temperature drives Zika virus transmission: evidence from empirical and mathematical models

Blanka Tesla; Leah R. Demakovsky; Erin A. Mordecai; Sadie J. Ryan; Matthew H. Bonds; Calistus N. Ngonghala; Melinda A. Brindley; Courtney C. Murdock

Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C–34.7°C. Thus, as temperatures move towards the predicted thermal optimum (29°C) owing to climate change, urbanization or seasonality, Zika could expand north and into longer seasons. By contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.


bioRxiv | 2018

Impacts of temperature on Zika virus transmission potential: combining empirical and mechanistic modeling approaches

Blanka Tesla; Leah R. Demakovsky; Erin A. Mordecai; Matthew H. Bonds; Calistus N. Ngonghala; Melinda A. Brindley; Courtney C. Murdock

Diseases like Zika, dengue, and chikungunya, which were once considered tropical and sub-tropical diseases, are now threatening temperate regions of the world due to climate change, globalization, and increasing urbanization. Temperature is a strong driver of vector-borne disease transmission, and characterizing the thermal range and optimum for transmission is essential to accurately predicting arbovirus emergence and spread. To advance our fundamental scientific understanding of the relationship between temperature and key pathogen traits for emerging arboviruses, we conducted a series of experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period, and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent R0 (the basic reproductive number) model, to infer how temperature impacts ZIKV transmission. We demonstrated that ZIKV transmission is optimized at a mean temperature of approximately 29°C, and has a thermal range of 22.7°C to 34.7°C. The predicted thermal minimum for Zika transmission is 5°C warmer than for dengue virus which suggests that current estimates on the global environmental suitability for Zika transmission are over-predicting its possible range. Accurately characterizing the unimodal effect of temperature on emerging arboviruses, like ZIKV, is critical for estimating the potential geographic and seasonal range for transmission, and accurately predicting where future climate change will increase, decrease, or have minimal impact on transmission.Temperature is a strong driver of vector-borne disease transmission. Yet, for emerging arboviruses we lack fundamental knowledge on the relationship between transmission and temperature. Current models rely on the untested assumption that Zika virus responds similarly to dengue virus, potentially limiting our ability to accurately predict the spread of Zika. We conducted experiments to estimate the thermal performance of Zika virus (ZIKV) in field-derived Aedes aegypti across eight constant temperatures. We observed strong, unimodal effects of temperature on vector competence, extrinsic incubation period, and mosquito survival. We used thermal responses of these traits to update an existing temperature-dependent model to infer temperature effects on ZIKV transmission. ZIKV transmission was optimized at 29°C, and had a thermal range of 22.7°C - 34.7°C. Thus, as temperatures move toward the predicted thermal optimum (29°C) due to climate change, urbanization, or seasonally, Zika could expand north and into longer seasons. In contrast, areas that are near the thermal optimum were predicted to experience a decrease in overall environmental suitability. We also demonstrate that the predicted thermal minimum for Zika transmission is 5°C warmer than that of dengue, and current global estimates on the environmental suitability for Zika are greatly over-predicting its possible range.


Viruses | 2018

Strain-Dependent Consequences of Zika Virus Infection and Differential Impact on Neural Development

Forrest Goodfellow; Katherine Willard; Xian Wu; Shelley L. Scoville; Steven L. Stice; Melinda A. Brindley

Maternal infection with Zika virus (ZIKV) during pregnancy can result in neonatal abnormalities, including neurological dysfunction and microcephaly. Experimental models of congenital Zika syndrome identified neural progenitor cells as a target of viral infection. Neural progenitor cells are responsible for populating the developing central nervous system with neurons and glia. Neural progenitor dysfunction can lead to severe birth defects, namely, lissencephaly, microcephaly, and cognitive deficits. For this study, the consequences of ZIKV infection in human pluripotent stem cell-derived neural progenitor (hNP) cells and neurons were evaluated. ZIKV isolates from Asian and African lineages displayed lineage-specific replication kinetics, cytopathic effects, and impacts on hNP function and neuronal differentiation. The currently circulating ZIKV isolates exhibit a unique profile of virulence, cytopathic effect, and impaired cellular functions that likely contribute to the pathological mechanism of congenital Zika syndrome. The authors found that infection with Asian-lineage ZIKV isolates impaired the proliferation and migration of hNP cells, and neuron maturation. In contrast, the African-lineage infections resulted in abrupt and extensive cell death. This work furthers the understanding of ZIKV-induced brain pathology.


Parasites & Vectors | 2018

Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus

Michelle V. Evans; Justine C. Shiau; Nicole Solano; Melinda A. Brindley; John M. Drake; Courtney C. Murdock

BackgroundMosquitoes are strongly influenced by environmental temperatures, both directly and indirectly via carry-over effects, a phenomenon by which adult phenotypes are shaped indirectly by the environmental conditions experienced in previous life stages. In landscapes with spatially varying microclimates, such as a city, the effects of environmental temperature can therefore lead to spatial patterns in disease dynamics. To explore the contribution of carry-over effects on the transmission of dengue-2 virus (DENV-2), we conducted a semi-field experiment comparing the demographic and transmission rates of Aedes albopictus reared on different urban land classes in the summer and autumn season. We parameterized a model of vectorial capacity using field- and literature-derived measurements to estimate the bias introduced into predictions of vectorial capacity not accounting for carry-over effects.ResultsThe larval environment of different land classes and seasons significantly impacted mosquito life history traits. Larval development and survival rates were higher in the summer than the autumn, with no difference across land class. The effect of land class on adult body size differed across season, with suburban mosquitoes having the smallest wing length in the summer and the largest wing length in the autumn, when compared to other land classes. Infection and dissemination rates were higher in the autumn and on suburban and rural land classes compared to urban. Infectiousness did not differ across land class or season. We estimate that not accounting for carry-over effects can underestimate disease transmission potential in suburban and urban sites in the summer by up to 25%.ConclusionsOur findings demonstrate the potential of the larval environment to differentially impact stages of DENV-2 infection in Ae. albopictus mosquitoes via carry-over effects. Failure to account for carry-over effects of the larval environment in mechanistic models can lead to biased estimates of disease transmission potential at fine-scales in urban environments.


PLOS Neglected Tropical Diseases | 2018

Estimating the effects of variation in viremia on mosquito susceptibility, infectiousness, and R0 of Zika in Aedes aegypti

Blanka Tesla; Leah R. Demakovsky; Hannah S. Packiam; Erin A. Mordecai; Américo D. Rodríguez; Matthew H. Bonds; Melinda A. Brindley; Courtney C. Murdock

Zika virus (ZIKV) is an arbovirus primarily transmitted by Aedes mosquitoes. Like most viral infections, ZIKV viremia varies over several orders of magnitude, with unknown consequences for transmission. To determine the effect of viral concentration on ZIKV transmission risk, we exposed field-derived Ae. aegypti mosquitoes to four doses (103, 104, 105, 106 PFU/mL) representative of potential variation in the field. We demonstrate that increasing ZIKV dose in the blood-meal significantly increases the probability of mosquitoes becoming infected, and consequently disseminating virus and becoming infectious. Additionally, we observed significant interactions between dose and days post-infection on dissemination and overall transmission efficiency, suggesting that variation in ZIKV dose affects the rates of midgut escape and salivary gland invasion. We did not find significant effects of dose on mosquito mortality. We also demonstrate that detecting virus using RT-qPCR approaches rather than plaque assays potentially over-estimates key transmission parameters, including the time at which mosquitoes become infectious and viral burden. Finally, using these data to parameterize an R0 model, we showed that increasing viremia from 104 to 106 PFU/mL increased relative R0 3.8-fold, demonstrating that variation in viremia substantially affects transmission risk.

Collaboration


Dive into the Melinda A. Brindley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Fu Chen

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qiang Shao

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge