Courtney M. Krest
Pennsylvania State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Courtney M. Krest.
Science | 2013
Timothy H. Yosca; Jonathan Rittle; Courtney M. Krest; Elizabeth L. Onderko; Alexey Silakov; Julio C. Calixto; Rachel K. Behan; Michael T. Green
The pKa of P450 Cytochrome P450 enzymes oxidize hydrocarbons through activation of oxygen at heme iron centers. However, the protein backbone has various sites (particularly tyrosine residues) that are also sensitive to oxidation, so how can the enzyme rapidly transform substrates without attacking itself? Yosca et al. (p. 825) explored the energetics of the competition between substrate and self-oxidation by measuring the pKa of the enzymes iron(IV)hydroxide motif. Cysteine thiolate coordination to iron in the P450 structure raised the pKa almost to 12—rendering the iron oxo far more basic than analogous motifs in other heme environments. Correspondingly, the electronic environment for H-atom transfer from the substrate was relatively favorable, compared to electron transfer from a backbone residue. The basicity of an iron oxo intermediate helps explain what keeps P450 enzymes from oxidizing their own backbone. Cytochrome P450 enzymes activate oxygen at heme iron centers to oxidize relatively inert substrate carbon-hydrogen bonds. Cysteine thiolate coordination to iron is posited to increase the pKa (where Ka is the acid dissociation constant) of compound II, an iron(IV)hydroxide complex, correspondingly lowering the one-electron reduction potential of compound I, the active catalytic intermediate, and decreasing the driving force for deleterious auto-oxidation of tyrosine and tryptophan residues in the enzyme’s framework. Here, we report on the preparation of an iron(IV)hydroxide complex in a P450 enzyme (CYP158) in ≥90% yield. Using rapid mixing technologies in conjunction with Mössbauer, ultraviolet/visible, and x-ray absorption spectroscopies, we determine a pKa value for this compound of 11.9. Marcus theory analysis indicates that this elevated pKa results in a >10,000-fold reduction in the rate constant for oxidations of the protein framework, making these processes noncompetitive with substrate oxidation.
Journal of Biological Chemistry | 2013
Courtney M. Krest; Elizabeth L. Onderko; Timothy H. Yosca; Julio C. Calixto; Richard F. Karp; Jovan Livada; Jonathan Rittle; Michael T. Green
Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis.
Journal of the American Chemical Society | 2008
J.M. Younker; Courtney M. Krest; Wei Jiang; Carsten Krebs; J.M.Jr. Bollinger; Michael T. Green
The class Ic ribonucleotide reductase from Chlamydia trachomatis ( Ct) uses a stable Mn(IV)/Fe(III) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of approximately 2.92 A. The Mn data also suggest the presence of a short 1.74 A Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe 2(III/III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH X ligands as well as the location of the Mn(IV) ion (site 1 or 2). The models that agree best with experimental observation feature a mu-1,3-carboxylate bridge (E120), terminal solvent (H 2O/OH) to site 1, one mu-O bridge, and one mu-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.
Journal of the American Chemical Society | 2008
Frances Namuswe; Gary D. Kasper; Amy A. Narducci Sarjeant; Takahiro Hayashi; Courtney M. Krest; Michael T. Green; Pierre Moënne-Loccoz; David P. Goldberg
Iron peroxide species have been identified as important intermediates in a number of nonheme iron as well as heme-containing enzymes, yet there are only a few examples of such species either synthetic or biological that have been well characterized. We describe the synthesis and structural characterization of a new series of five-coordinate (N4S(thiolate))Fe(II) complexes that react with tert-butyl hydroperoxide ((t)BuOOH) or cumenyl hydroperoxide (CmOOH) to give metastable alkylperoxo-iron(III) species (N4S(thiolate)Fe(III)-OOR) at low temperature. These complexes were designed specifically to mimic the nonheme iron active site of superoxide reductase, which contains a five-coordinate iron(II) center bound by one Cys and four His residues in the active form of the protein. The structures of the Fe(II) complexes are analyzed by X-ray crystallography, and their electrochemical properties are assessed by cyclic voltammetry. For the Fe(III)-OOR species, low-temperature UV-vis spectra reveal intense peaks between 500-550 nm that are typical of peroxide to iron(III) ligand-to-metal charge-transfer (LMCT) transitions, and EPR spectroscopy shows that these alkylperoxo species are all low-spin iron(III) complexes. Identification of the vibrational modes of the Fe(III)-OOR unit comes from resonance Raman (RR) spectroscopy, which shows nu(Fe-O) modes between 600-635 cm(-1) and nu(O-O) bands near 800 cm(-1). These Fe-O stretching frequencies are significantly lower than those found in other low-spin Fe(III)-OOR complexes. Trends in the data conclusively show that this weakening of the Fe-O bond arises from a trans influence of the thiolate donor, and density functional theory (DFT) calculations support these findings. These results suggest a role for the cysteine ligand in SOR, and are discussed in light of the recent assessments of the function of the cysteine ligand in this enzyme.
Nature Chemistry | 2015
Courtney M. Krest; Alexey Silakov; Jonathan Rittle; Timothy H. Yosca; Elizabeth L. Onderko; Julio C. Calixto; Michael T. Green
Cytochrome P450 (P450) and chloroperoxidase (CPO) are thiolate ligated heme proteins that catalyze the activation of carbon hydrogen bonds. The principal intermediate in these reactions is a ferryl radical species called compound I. P450 compound I (P450-I) is significantly more reactive than CPO-I, which only cleaves activated C-H bonds. To provide insight into the differing reactivities of these intermediates, we examined CPO-I and P450-I with variable temperature Mössbauer and X-ray absorption spectroscopies. These measurements indicate that the Fe-S bond is significantly shorter in P450-I than in CPO-I. This difference in Fe-S bond lengths can be understood in terms of variations in hydrogen bonding patterns within the “cys-pocket” (a portion of the proximal helix that encircles the thiolate ligand). Weaker hydrogen bonding in P450-I results in a shorter Fe-S bond, which enables greater electron donation from the axial-thiolate ligand. This observation may in part explain P450s greater propensity for C-H bond activation.
Journal of the American Chemical Society | 2014
Timothy H. Yosca; Rachel K. Behan; Courtney M. Krest; Elizabeth L. Onderko; Matthew C. Langston; Michael T. Green
To provide insight into the iron(IV)hydroxide pKa of histidine ligated heme proteins, we have probed the active site of myoglobin compound II over the pH range of 3.9–9.5, using EXAFS, Mössbauer, and resonance Raman spectroscopies. We find no indication of ferryl protonation over this pH range, allowing us to set an upper limit of 2.7 on the iron(IV)hydroxide pKa in myoglobin. Together with the recent determination of an iron(IV)hydroxide pKa ∼ 12 in the thiolate-ligated heme enzyme cytochrome P450, this result provides insight into Nature’s ability to tune catalytic function through its choice of axial ligand.
Journal of the American Chemical Society | 2013
Laura M. K. Dassama; Alexey Silakov; Courtney M. Krest; Julio C. Calixto; Carsten Krebs; J. Martin Bollinger; Michael T. Green
A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, reaction of the proteins Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the μ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or μ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (μ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).
Inorganic Chemistry | 2010
Jay Stasser; Frances Namuswe; Gary D. Kasper; Yunbo Jiang; Courtney M. Krest; Michael T. Green; James E. Penner-Hahn; David P. Goldberg
The reaction of a series of thiolate-ligated iron(II) complexes [Fe(II)([15]aneN(4))(SC(6)H(5))]BF(4) (1), [Fe(II)([15]aneN(4))(SC(6)H(4)-p-Cl)]BF(4) (2), and [Fe(II)([15]aneN(4))(SC(6)H(4)-p-NO(2))]BF(4) (3) with alkylhydroperoxides at low temperature (-78 °C or -40 °C) leads to the metastable alkylperoxo-iron(III) species [Fe(III)([15]aneN(4))(SC(6)H(5))(OOtBu)]BF(4) (1a), [Fe(III)([15]aneN(4))(SC(6)H(4)-p-Cl)(OOtBu)]BF(4) (2a), and [Fe(III)([15]aneN(4))(SC(6)H(4)-p-NO(2))(OOtBu)]BF(4) (3a), respectively. X-ray absorption spectroscopy (XAS) studies were conducted on the Fe(III)-OOR complexes and their iron(II) precursors. The edge energy for the iron(II) complexes (∼7118 eV) shifts to higher energy upon oxidation by ROOH, and the resulting edge energies for the Fe(III)-OOR species range from 7121-7125 eV and correlate with the nature of the thiolate donor. Extended X-ray absorption fine structure (EXAFS) analysis of the iron(II) complexes 1-3 in CH(2)Cl(2) show that their solid state structures remain intact in solution. The EXAFS data on 1a-3a confirm their proposed structures as mononuclear, 6-coordinate Fe(III)-OOR complexes with 4N and 1S donors completing the coordination sphere. The Fe-O bond distances obtained from EXAFS for 1a-3a are 1.82-1.85 Å, significantly longer than other low-spin Fe(III)-OOR complexes. The Fe-O distances correlate with the nature of the thiolate donor, in agreement with the previous trends observed for ν(Fe-O) from resonance Raman (RR) spectroscopy, and supported by optimized geometries obtained from density functional theory (DFT) calculations. Reactivity and kinetic studies on 1a- 3a show an important influence of the thiolate donor.
Inorganic Chemistry | 2016
Regina A. Baglia; Courtney M. Krest; Tzuhsiung Yang; Pannee Leeladee; David P. Goldberg
Journal of the American Chemical Society | 2016
Timothy H. Yosca; Matthew C. Langston; Courtney M. Krest; Elizabeth L. Onderko; Tyler L. Grove; Jovan Livada; Michael T. Green