Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig D. Blanchette is active.

Publication


Featured researches published by Craig D. Blanchette.


Biochimica et Biophysica Acta | 2009

AFM for structure and dynamics of biomembranes.

Emel I. Goksu; Juan M. Vanegas; Craig D. Blanchette; Wan-Chen Lin; Marjorie L. Longo

We review structure and dynamic measurements of biomembranes by atomic force microscopy (AFM). We focus mainly on studies involving supported lipid bilayers (SLBs), particularly formation by vesicle rupture on flat and corrugated surfaces, nucleation and growth of domains in phase-separated systems, anesthetic-lipid interactions, and protein/peptide interactions in multicomponent systems. We show that carefully designed experiments along with real-time AFM imaging with superior lateral and z resolution (0.1 nm) have revealed quantitative details of the mechanisms and factors controlling vesicle rupture, domain shape and size, phase transformations, and some model biological interactions. The AFM tip can also be used as a mechanical transducer and incorporated in electrochemical measurements of membrane components; therefore, we touch on these important applications in both model and cell membranes.


Journal of Proteome Research | 2008

Insertion of Membrane Proteins into Discoidal Membranes Using a Cell-Free Protein Expression Approach

Federico Katzen; Julia Fletcher; Jian Ping Yang; Douglas Kang; Todd Peterson; Jenny A. Cappuccio; Craig D. Blanchette; Todd Sulchek; Brett A. Chromy; Paul D. Hoeprich; Matthew A. Coleman; Wieslaw Kudlicki

We report a cell-free approach for expressing and inserting integral membrane proteins into water-soluble particles composed of discoidal apolipoprotein-lipid bilayers. Proteins are inserted into the particles, circumventing the need of extracting and reconstituting the product into membrane vesicles. Moreover, the planar nature of the membrane support makes the protein freely accessible from both sides of the lipid bilayer. Complexes are successfully purified by means of the apoplipoprotein component or by the carrier protein. The method significantly enhances the solubility of a variety of membrane proteins with different functional roles and topologies. Analytical assays for a subset of model membrane proteins indicate that proteins are correctly folded and active. The approach provides a platform amenable to high-throughput structural and functional characterization of a variety of traditionally intractable drug targets.


Molecular & Cellular Proteomics | 2008

Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles

Jenny A. Cappuccio; Craig D. Blanchette; Todd Sulchek; Erin S. Arroyo; Joel M. Kralj; Angela K. Hinz; Edward A. Kuhn; Brett A. Chromy; Brent W. Segelke; Kenneth J. Rothschild; Julia Fletcher; Federico Katzen; Todd Peterson; Wieslaw Kudlicki; Graham Bench; Paul D. Hoeprich; Matthew A. Coleman

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.


PLOS ONE | 2009

Decoupling Internalization, Acidification and Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated Beads in Epithelial Cells

Craig D. Blanchette; Youn-Hi Woo; Cynthia B. Thomas; Nan Shen; Todd Sulchek; Amy L. Hiddessen

Background Phagocytosis has been extensively examined in ‘professional’ phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in ‘non-professional’ phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Methodology/Principal Findings Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. Conclusions/Significance Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23–32 min, 3–4 min and 74–120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems.


Methods of Molecular Biology | 2009

Cell-free expression for nanolipoprotein particles: Building a high-throughput membrane protein solubility platform

Jenny A. Cappuccio; Angela K. Hinz; Edward A. Kuhn; Julia Fletcher; Erin S. Arroyo; Paul T. Henderson; Craig D. Blanchette; Vickie L. Walsworth; Michele Corzett; Richard J. Law; Joseph B. Pesavento; Brent W. Segelke; Todd Sulchek; Brett A. Chromy; Federico Katzen; Todd Peterson; Graham Bench; Wieslaw Kudlicki; Paul D. Hoeprich; Matthew A. Coleman

Membrane-associated proteins and protein complexes account for approximately a third or more of the proteins in the cell (1, 2). These complexes mediate essential cellular processes; including signal transduc-tion, transport, recognition, bioenergetics and cell-cell communication. In general, membrane proteins are challenging to study because of their insolubility and tendency to aggregate when removed from their protein lipid bilayer environment. This chapter is focused on describing a novel method for producing and solubilizing membrane proteins that can be easily adapted to high-throughput expression screening. This process is based on cell-free transcription and translation technology coupled with nanolipoprotein par ticles (NLPs), which are lipid bilayers confined within a ring of amphipathic protein of defined diameter. The NLPs act as a platform for inserting, solubilizing and characterizing functional membrane proteins. NLP component proteins (apolipoproteins), as well as membrane proteins can be produced by either traditional cell-based or as discussed here, cell-free expression methodologies.


Journal of the American Chemical Society | 2009

Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Water-Soluble Nanolipoprotein Particles

Sarah E. Baker; Robert C. Hopkins; Craig D. Blanchette; Vicki L. Walsworth; Rhoda A. Sumbad; Nicholas O. Fischer; Edward A. Kuhn; Matt Coleman; Brett A. Chromy; Sonia E. Létant; Paul D. Hoeprich; Michael W. W. Adams; Paul T. Henderson

Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBHs), poor water solubility. Nanolipoprotein particles (NLPs) formed from apolipoproteins and phospholipids offer a novel means of incorporating MBHs into a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity, and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen-production devices.


Bioconjugate Chemistry | 2009

Immobilization of his-tagged proteins on nickel-chelating nanolipoprotein particles

Nicholas O. Fischer; Craig D. Blanchette; Brett A. Chromy; Edward A. Kuhn; Brent W. Segelke; Michele Corzett; Graham Bench; Peter W. Mason; Paul D. Hoeprich

Nanolipoprotein particles (NLPs) are nanometer-sized, discoidal particles that self-assemble from purified apolipoprotein and phospholipid. Their size and facile functionalization suggest potential application of NLPs as platforms for the presentation and delivery of recombinant proteins. To this end, we investigated incorporation of nickel-chelating lipids into NLPs (NiNLPs) and subsequent sequestration of polyhistidine (His)-tagged proteins. From initial lipid screens for NLP formation, the two phospholipids DMPC and DOPC were identified as suitable bulk lipids for incorporation of the nickel-chelating lipid DOGS-NTA-Ni into NLPs, and NiNLPs were successfully formed with varying amounts of DOGS-NTA-Ni. NiNLPs consisting of 10% DOGS-NTA-Ni with 90% bulk lipid (either DMPC or DOPC) were thoroughly characterized by size exclusion chromatography (SEC), non-denaturing gradient gel electrophoresis (NDGGE), and atomic force microscopy (AFM). Three different His-tagged proteins were sequestered on NiNLPs in a nickel-dependent manner, and the amount of immobilized protein was contingent on the size and composition of the NiNLP.


Biochimica et Biophysica Acta | 2009

Atomic force microscopy differentiates discrete size distributions between membrane protein containing and empty nanolipoprotein particles.

Craig D. Blanchette; Jenny A. Cappuccio; Edward A. Kuhn; Brent W. Segelke; W. Henry Benner; Brett A. Chromy; Matthew A. Coleman; Graham Bench; Paul D. Hoeprich; Todd Sulchek

To better understand the incorporation of membrane proteins into discoidal nanolipoprotein particles (NLPs) we have used atomic force microscopy (AFM) to image and analyze NLPs assembled in the presence of bacteriorhodopsin (bR), lipoprotein E4 n-terminal 22k fragment scaffold and DMPC lipid. The self-assembly process produced two distinct NLP populations: those containing inserted bR (bR-NLPs) and those that did not (empty-NLPs). The bR-NLPs were distinguishable from empty-NLPs by an average increase in height of 1.0 nm as measured by AFM. Streptavidin binding to biotinylated bR confirmed that the original 1.0 nm height increase corresponds to br-NLP incorporation. AFM and ion mobility spectrometry (IMS) measurements suggest that NLP size did not vary around a single mean but instead there were several subpopulations, which were separated by discrete diameters. Interestingly, when bR was present during assembly the diameter distribution was shifted to larger particles and the larger particles had a greater likelihood of containing bR than smaller particles, suggesting that membrane proteins alter the mechanism of NLP assembly.


Journal of the American Chemical Society | 2013

Colocalized delivery of adjuvant and antigen using nanolipoprotein particles enhances the immune response to recombinant antigens.

Nicholas O. Fischer; Amy Rasley; Michele Corzett; Mona H. Hwang; Paul D. Hoeprich; Craig D. Blanchette

Subunit antigen-based vaccines can provide a number of important benefits over traditional vaccine candidates, such as overall safety. However, because of the inherently low immunogenicity of these antigens, methods for colocalized delivery of antigen and immunostimulatory molecules (i.e., adjuvants) are needed. Here we report a robust nanolipoprotein particle (NLP)-based vaccine delivery platform that facilitates the codelivery of both subunit antigens and adjuvants. Ni-chelating NLPs (NiNLPs) were assembled to incorporate the amphipathic adjuvants monophosphoryl lipid A and cholesterol-modified CpG oligodeoxynucleotides, which can bind His-tagged protein antigens. Colocalization of antigen and adjuvant delivery using the NiNLP platform resulted in elevated antibody production against His-tagged influenza hemagglutinin 5 and Yersinia pestis LcrV antigens. Antibody titers in mice immunized with the adjuvanted NLPs were 5-10 times higher than those observed with coadministration formulations and nonadjuvanted NiNLPs. Colocalized delivery of adjuvant and antigen provides significantly greater immune stimulation in mice than coadministered formulations.


Bioconjugate Chemistry | 2010

Conjugation to nickel-chelating nanolipoprotein particles increases the potency and efficacy of subunit vaccines to prevent west nile encephalitis

Nicholas O. Fischer; Ernesto Infante; Tomohiro Ishikawa; Craig D. Blanchette; Nigel Bourne; Paul D. Hoeprich; Peter W. Mason

Subunit antigens are attractive candidates for vaccine development, as they are safe, cost-effective, and rapidly produced. Nevertheless, subunit antigens often need to be adjuvanted and/or formulated to produce products with acceptable potency and efficacy. Here, we describe a simple method for improving the potency and efficacy of a recombinant subunit antigen by its immobilization on nickel-chelating nanolipoprotein particles (NiNLPs). NiNLPs are membrane mimetic nanoparticles that provide a delivery and presentation platform amenable to binding any recombinant subunit immunogens featuring a polyhistidine tag. A His-tagged, soluble truncated form of the West Nile virus (WNV) envelope protein (trE-His) was immobilized on NiNLPs. Single inoculations of the NiNLP-trE-His produced superior anti-WNV immune responses and provided significantly improved protection against a live WNV challenge compared to mice inoculated with trE-His alone. These results have broad implications in vaccine development and optimization, as NiNLP technology is well-suited to many types of vaccines, providing a universal platform for enhancing the potency and efficacy of recombinant subunit immunogens.

Collaboration


Dive into the Craig D. Blanchette's collaboration.

Top Co-Authors

Avatar

Nicholas O. Fischer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul D. Hoeprich

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michele Corzett

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amy Rasley

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew A. Coleman

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Brent W. Segelke

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Edward A. Kuhn

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Graham Bench

Lawrence Livermore National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge