Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matthew A. Coleman is active.

Publication


Featured researches published by Matthew A. Coleman.


Journal of Bacteriology | 2006

The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans

Harry R. Beller; Patrick Chain; Tracy E. Letain; Anu Y. Chakicherla; Frank W. Larimer; Paul M. Richardson; Matthew A. Coleman; Ann P. Wood; Donovan P. Kelly

The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, beta-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to oxidize mineral electron donors. Notable genomic features include (i) genes encoding c-type cytochromes totaling 1 to 2 percent of the genome, which is a proportion greater than for almost all bacterial and archaeal species sequenced to date, (ii) genes encoding two [NiFe]hydrogenases, which is particularly significant because no information on hydrogenases has previously been reported for T. denitrificans and hydrogen oxidation appears to be critical for anaerobic U(IV) oxidation by this species, (iii) a diverse complement of more than 50 genes associated with sulfur-compound oxidation (including sox genes, dsr genes, and genes associated with the AMP-dependent oxidation of sulfite to sulfate), some of which occur in multiple (up to eight) copies, (iv) a relatively large number of genes associated with inorganic ion transport and heavy metal resistance, and (v) a paucity of genes encoding organic-compound transporters, commensurate with obligate chemolithoautotrophy. Ultimately, the genome sequence of T. denitrificans will enable elucidation of the mechanisms of aerobic and anaerobic sulfur-compound oxidation by beta-proteobacteria and will help reveal the molecular basis of this organisms role in major biogeochemical cycles (i.e., those involving sulfur, nitrogen, and carbon) and groundwater restoration.


International Journal of Radiation Biology | 2003

GENE EXPRESSION CHANGES IN MOUSE BRAIN AFTER EXPOSURE TO LOW-DOSE IONIZING RADIATION

Eric Yin; David O. Nelson; Matthew A. Coleman; Leif E. Peterson; Andrew J. Wyrobek

Purpose: To characterize the cellular functions associated with the altered transcript profiles of mouse brain exposed to low‐dose in vivo gamma‐irradiation. Materials and methods: Cerebral RNA was isolated at 30 min and 4 h after whole‐body irradiation at 0.1 or 2 Gy, hybridized to random oligonucleotide arrays, and evaluated for time and dose–response patterns by multifactorial analyses. Results: Brain irradiation modulated the expression patterns of 1574 genes, of which 855 showed more than 1.5‐fold variation. about 30% of genes showed dose‐dependent variations, including genes exclusively affected by 0.1 Gy. About 60% of genes showed time‐dependent variation with more genes affected at 30 min than at 4 h. Early changes involved signal transduction, ion regulation and synaptic signalling. Later changes involved metabolic functions including myelin and protein synthesis. Low‐dose radiation also modulated the expression of genes involved in stress response, cell‐cycle control and DNA synthesis/repair. Conclusions: Doses of 0.1 Gy induced changes in gene expression that were qualitatively different from those at 2 Gy. The findings suggest that low‐dose irradiation of the brain induces the expression of genes involved in protective and reparative functions, while down‐modulating genes involved in neural signalling activity.


International Journal of Radiation Biology | 2006

Candidate protein biodosimeters of human exposure to ionizing radiation

Francesco Marchetti; Matthew A. Coleman; Irene M. Jones; Andrew J. Wyrobek

Purpose: To conduct a literature review of candidate protein biomarkers for individual radiation biodosimetry of exposure to ionizing radiation. Materials and methods: Reviewed ∼300 publications (1973 – April 2006) that reported protein effects in mammalian systems after either in vivo or in vitro radiation exposure. Results: We found 261 radiation-responsive proteins including 173 human proteins. Most of the studies used high doses of ionizing radiation (>4 Gy) and had no information on dose- or time-responses. The majority of the proteins showed increased amounts or changes in phosphorylation states within 24 h after exposure (range: 1.5- to 10-fold). Of the 47 proteins that are responsive at doses of 1 Gy and below, 6 showed phosphorylation changes at doses below 10 cGy. Proteins were assigned to 9 groups based on consistency of response across species, dose- and time-response information and known role in the radiation damage response. Conclusions: ATM (Ataxia telengiectasia mutated), H2AX (histone 2AX), CDKN1A (Cyclin-dependent kinase inhibitor 1A), and TP53 (tumor protein 53) are top candidate radiation protein biomarkers. Furthermore, we recommend a panel of protein biomarkers, each with different dose and time optima, to improve individual radiation biodosimetry for discriminating between low-, moderate-, and high-dose exposures. Our findings have applications for early triage and follow-up medical assessments.


Journal of Bacteriology | 2004

Temporal Global Changes in Gene Expression during Temperature Transition in Yersinia pestis

Vladimir L. Motin; Anca Georgescu; Joseph P. Fitch; Pauline P. Gu; David O. Nelson; Shalini Mabery; Janine B. Garnham; Bahrad A. Sokhansanj; Linda L. Ott; Matthew A. Coleman; Jeffrey M. Elliott; Laura M. Kegelmeyer; Andrew J. Wyrobek; Thomas R. Slezak; Robert R. Brubaker; Emilio Garcia

DNA microarrays encompassing the entire genome of Yersinia pestis were used to characterize global regulatory changes during steady-state vegetative growth occurring after shift from 26 to 37 degrees C in the presence and absence of Ca2+. Transcriptional profiles revealed that 51, 4, and 13 respective genes and open reading frames (ORFs) on pCD, pPCP, and pMT were thermoinduced and that the majority of these genes carried by pCD were downregulated by Ca2+. In contrast, Ca2+ had little effect on chromosomal genes and ORFs, of which 235 were thermally upregulated and 274 were thermally downregulated. The primary consequence of these regulatory events is profligate catabolism of numerous metabolites available in the mammalian host.


Radiation Research | 2005

Low-Dose Irradiation Alters the Transcript Profiles of Human Lymphoblastoid Cells Including Genes Associated with Cytogenetic Radioadaptive Response

Matthew A. Coleman; Eric Yin; Leif E. Peterson; David O. Nelson; Karen Sorensen; James D. Tucker; Andrew J. Wyrobek

Abstract Coleman, M. A., Yin, E., Peterson, L. E., Nelson, D., Sorensen, K., Tucker, J. D. and Wyrobek, A. J. Low-Dose Irradiation Alters the Transcript Profiles of Human Lymphoblastoid Cells Including Genes Associated with Cytogenetic Radioadaptive Response. Radiat. Res. 164, 369–382 (2005). Low-dose ionizing radiation alters the gene expression profiles of mammalian cells, yet there is little understanding of the underlying cellular mechanisms responsible for these changes or of their consequences for genomic stability. We investigated the cytogenetic adaptive response of human lymphoblastoid cell lines exposed to 5 cGy (priming dose) followed by 2 Gy (challenge dose) compared to cells that received a single 2-Gy dose to (a) determine how the priming dose influences subsequent gene transcript expression in reproducibly adapting and non-adapting cell lines, and (b) identify gene transcripts that are associated with reductions in the magnitude of chromosomal damage after the challenge dose. The transcript profiles were evaluated using oligonucleotide arrays and RNA obtained 4 h after the challenge dose. A set of 145 genes (false discovery rate = 5%) with transcripts that were affected by the 5-cGy priming dose fell into two categories: (a) a set of common genes that were similarly modulated by the 5-cGy priming dose irrespective of whether the cells subsequently adapted or not and (b) genes with differential transcription in accordance with the cell lines that showed either adaptive or non-adaptive outcomes. The common priming-dose response genes showed up-regulation for protein synthesis genes and down-regulation of metabolic and signal transduction genes (>10-fold differences). The genes associated with subsequent adaptive and non-adaptive outcomes involved DNA repair, stress response, cell cycle control and apoptosis. Our findings support the importance of TP53-related functions in the control of the low-dose cytogenetic radioadaptive response and suggest that certain low-dose-induced alterations in cellular functions are predictive for the risk of subsequent genomic damage.


Journal of Proteome Research | 2008

Insertion of Membrane Proteins into Discoidal Membranes Using a Cell-Free Protein Expression Approach

Federico Katzen; Julia Fletcher; Jian Ping Yang; Douglas Kang; Todd Peterson; Jenny A. Cappuccio; Craig D. Blanchette; Todd Sulchek; Brett A. Chromy; Paul D. Hoeprich; Matthew A. Coleman; Wieslaw Kudlicki

We report a cell-free approach for expressing and inserting integral membrane proteins into water-soluble particles composed of discoidal apolipoprotein-lipid bilayers. Proteins are inserted into the particles, circumventing the need of extracting and reconstituting the product into membrane vesicles. Moreover, the planar nature of the membrane support makes the protein freely accessible from both sides of the lipid bilayer. Complexes are successfully purified by means of the apoplipoprotein component or by the carrier protein. The method significantly enhances the solubility of a variety of membrane proteins with different functional roles and topologies. Analytical assays for a subset of model membrane proteins indicate that proteins are correctly folded and active. The approach provides a platform amenable to high-throughput structural and functional characterization of a variety of traditionally intractable drug targets.


Molecular & Cellular Proteomics | 2008

Cell-free Co-expression of Functional Membrane Proteins and Apolipoprotein, Forming Soluble Nanolipoprotein Particles

Jenny A. Cappuccio; Craig D. Blanchette; Todd Sulchek; Erin S. Arroyo; Joel M. Kralj; Angela K. Hinz; Edward A. Kuhn; Brett A. Chromy; Brent W. Segelke; Kenneth J. Rothschild; Julia Fletcher; Federico Katzen; Todd Peterson; Wieslaw Kudlicki; Graham Bench; Paul D. Hoeprich; Matthew A. Coleman

Here we demonstrate rapid production of solubilized and functional membrane protein by simultaneous cell-free expression of an apolipoprotein and a membrane protein in the presence of lipids, leading to the self-assembly of membrane protein-containing nanolipoprotein particles (NLPs). NLPs have shown great promise as a biotechnology platform for solubilizing and characterizing membrane proteins. However, current approaches are limited because they require extensive efforts to express, purify, and solubilize the membrane protein prior to insertion into NLPs. By the simple addition of a few constituents to cell-free extracts, we can produce membrane proteins in NLPs with considerably less effort. For this approach an integral membrane protein and an apolipoprotein scaffold are encoded by two DNA plasmids introduced into cell-free extracts along with lipids. For this study reported here we used plasmids encoding the bacteriorhodopsin (bR) membrane apoprotein and scaffold protein Δ1–49 apolipoprotein A-I fragment (Δ49A1). Cell free co-expression of the proteins encoded by these plasmids, in the presence of the cofactor all-trans-retinal and dimyristoylphosphatidylcholine, resulted in production of functional bR as demonstrated by a 5-nm shift in the absorption spectra upon light adaptation and characteristic time-resolved FT infrared difference spectra for the bR → M transition. Importantly the functional bR was solubilized in discoidal bR·NLPs as determined by atomic force microscopy. A survey study of other membrane proteins co-expressed with Δ49A1 scaffold protein also showed significantly increased solubility of all of the membrane proteins, indicating that this approach may provide a general method for expressing membrane proteins enabling further studies.


Scientific Reports | 2015

Fixed-target protein serial microcrystallography with an x-ray free electron laser

Mark S. Hunter; Brent W. Segelke; Marc Messerschmidt; Garth J. Williams; Nadia A. Zatsepin; Anton Barty; W. Henry Benner; David B. Carlson; Matthew A. Coleman; A. Graf; Stefan P. Hau-Riege; Tommaso Pardini; M. Marvin Seibert; James E. Evans; Sébastien Boutet; Matthias Frank

We present results from experiments at the Linac Coherent Light Source (LCLS) demonstrating that serial femtosecond crystallography (SFX) can be performed to high resolution (~2.5 Å) using protein microcrystals deposited on an ultra-thin silicon nitride membrane and embedded in a preservation medium at room temperature. Data can be acquired at a high acquisition rate using x-ray free electron laser sources to overcome radiation damage, while sample consumption is dramatically reduced compared to flowing jet methods. We achieved a peak data acquisition rate of 10 Hz with a hit rate of ~38%, indicating that a complete data set could be acquired in about one 12-hour LCLS shift using the setup described here, or in even less time using hardware optimized for fixed target SFX. This demonstration opens the door to ultra low sample consumption SFX using the technique of diffraction-before-destruction on proteins that exist in only small quantities and/or do not produce the copious quantities of microcrystals required for flowing jet methods.


Journal of Bacteriology | 2006

Whole-Genome Transcriptional Analysis of Chemolithoautotrophic Thiosulfate Oxidation by Thiobacillus denitrificans under Aerobic versus Denitrifying Conditions

Harry R. Beller; Tracy E. Letain; Anu Y. Chakicherla; Staci R. Kane; Tina C. Legler; Matthew A. Coleman

Thiobacillus denitrificans is one of the few known obligate chemolithoautotrophic bacteria capable of energetically coupling thiosulfate oxidation to denitrification as well as aerobic respiration. As very little is known about the differential expression of genes associated with key chemolithoautotrophic functions (such as sulfur compound oxidation and CO2 fixation) under aerobic versus denitrifying conditions, we conducted whole-genome, cDNA microarray studies to explore this topic systematically. The microarrays identified 277 genes (approximately 10% of the genome) as differentially expressed using RMA (robust multiarray average) statistical analysis and a twofold cutoff. Genes upregulated (ca. 6- to 150-fold) under aerobic conditions included a cluster of genes associated with iron acquisition (e.g., siderophore-related genes), a cluster of cytochrome cbb3 oxidase genes, cbbL and cbbS (encoding the large and small subunits of form I ribulose 1,5-bisphosphate carboxylase/oxygenase, or RubisCO), and multiple molecular chaperone genes. Genes upregulated (ca. 4- to 95-fold) under denitrifying conditions included nar, nir, and nor genes (associated, respectively, with nitrate reductase, nitrite reductase, and nitric oxide reductase, which catalyze successive steps of denitrification), cbbM (encoding form II RubisCO), and genes involved with sulfur compound oxidation (including two physically separated but highly similar copies of sulfide:quinone oxidoreductase and of dsrC, associated with dissimilatory sulfite reductase). Among genes associated with denitrification, relative expression levels (i.e., degree of upregulation with nitrate) tended to decrease in the order nar > nir > nor > nos. Reverse transcription-quantitative PCR analysis was used to validate these trends.


IUCrJ | 2014

Femtosecond X-ray diffraction from two-dimensional protein crystals

Matthias Frank; David B. Carlson; Mark S. Hunter; Garth J. Williams; Marc Messerschmidt; Nadia A. Zatsepin; A. Barty; W. Henry Benner; Kaiqin Chu; A. Graf; Stefan P. Hau-Riege; Richard A. Kirian; Celestino Padeste; Tommaso Pardini; Bill Pedrini; Brent W. Segelke; M. Marvin Seibert; John C. Spence; Ching-Ju Tsai; Stephen M. Lane; Xiao Dan Li; Gebhard F. X. Schertler; Sébastien Boutet; Matthew A. Coleman; James E. Evans

Bragg diffraction achieved from two-dimensional protein crystals using femtosecond X-ray laser snapshots is presented.

Collaboration


Dive into the Matthew A. Coleman's collaboration.

Top Co-Authors

Avatar

Brent W. Segelke

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Wei He

University of California

View shared research outputs
Top Co-Authors

Avatar

Craig D. Blanchette

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Feliza Bourguet

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Hoeprich

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jenny A. Cappuccio

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Leif E. Peterson

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Todd Sulchek

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge