Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig D. Snyder is active.

Publication


Featured researches published by Craig D. Snyder.


Landscape Ecology | 2003

Influences of upland and riparian land use patterns on stream biotic integrity

Craig D. Snyder; John A. Young; R. Villella; David P. Lemarié

We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.


Ecological Applications | 2015

Accounting for groundwater in stream fish thermal habitat responses to climate change

Craig D. Snyder; Nathaniel P. Hitt; John A. Young

Forecasting climate change effects on aquatic fauna and their habitat requires an understanding of how water temperature responds to changing air temperature (i.e., thermal sensitivity). Previous efforts to forecast climate effects on brook trout (Salvelinus fontinalis) habitat have generally assumed uniform air-water temperature relationships over large areas that cannot account for groundwater inputs and other processes that operate at finer spatial scales. We developed regression models that accounted for groundwater influences on thermal sensitivity from measured air-water temperature relationships within forested watersheds in eastern North America (Shenandoah National Park, Virginia, USA, 78 sites in nine watersheds). We used these reach-scale models to forecast climate change effects on stream temperature and brook trout thermal habitat, and compared our results to previous forecasts based upon large-scale models. Observed stream temperatures were generally less sensitive to air temperature than previously assumed, and we attribute this to the moderating effect of shallow groundwater inputs. Predicted groundwater temperatures from air-water regression models corresponded well to observed groundwater temperatures elsewhere in the study area. Predictions of brook trout future habitat loss derived from our fine-grained models. were far less pessimistic than those from prior models developed at coarser spatial resolutions. However, our models also revealed spatial variation in thermal sensitivity within and among catchments resulting in a patchy distribution of thermally suitable habitat. Habitat fragmentation due to thermal barriers therefore may have an increasingly important role for trout population viability in headwater streams. Our results demonstrate that simple adjustments to air-water temperature regression models can provide a powerful and cost-effective approach for predicting future stream temperatures while accounting for effects of groundwater.


Environmental Monitoring and Assessment | 2002

A TERRAIN-BASED PAIRED-SITE SAMPLING DESIGN TO ASSESS BIODIVERSITY LOSSES FROM EASTERN HEMLOCK DECLINE

John A. Young; David R. Smith; Craig D. Snyder; David P. Lemarié

Biodiversity surveys are often hampered by the inability tocontrol extraneous sources of variability introduced intocomparisons of populations across a heterogenous landscape. If not specifically accounted for a priori, this noisecan weaken comparisons between sites, and can make itdifficult to draw inferences about specific ecologicalprocesses. We developed a terrain-based, paired-sitesampling design to analyze differences in aquaticbiodiversity between streams draining eastern hemlock (Tsuga canadensis) forests, and those draining mixedhardwood forests in Delaware Water Gap National RecreationArea (USA). The goal of this design was to minimize variancedue to terrain influences on stream communities, whilerepresenting the range of hemlock dominated streamenvironments present in the park. We used geographicinformation systems (GIS) and cluster analysis to define andpartition hemlock dominated streams into terrain types basedon topographic variables and stream order. We computedsimilarity of forest stands within terrain types and usedthis information to pair hemlock-dominated streams withhardwood counterparts prior to sampling. We evaluated theeffectiveness of the design through power analysis and foundthat power to detect differences in aquatic invertebratetaxa richness was highest when sites were paired and terraintype was included as a factor in the analysis. Precision ofthe estimated difference in mean richness was nearly doubledusing the terrain-based, paired site design in comparison toother evaluated designs. Use of this method allowed us tosample stream communities representative of park-wide forestconditions while effectively controlling for landscapevariability.


Ecology | 2012

Experimental and environmental factors affect spurious detection of ecological thresholds

Jonathan P. Daily; Nathaniel P. Hitt; David R. Smith; Craig D. Snyder

Threshold detection methods are increasingly popular for assessing nonlinear responses to environmental change, but their statistical performance remains poorly understood. We simulated linear change in stream benthic macroinvertebrate communities and evaluated the performance of commonly used threshold detection methods based on model fitting (piecewise quantile regression [PQR]), data partitioning (nonparametric change point analysis [NCPA]), and a hybrid approach (significant zero crossings [SiZer]). We demonstrated that false detection of ecological thresholds (type I errors) and inferences on threshold locations are influenced by sample size, rate of linear change, and frequency of observations across the environmental gradient (i.e., sample-environment distribution, SED). However, the relative importance of these factors varied among statistical methods and between inference types. False detection rates were influenced primarily by user-selected parameters for PQR (tau) and SiZer (bandwidth) and secondarily by sample size (for PQR) and SED (for SiZer). In contrast, the location of reported thresholds was influenced primarily by SED. Bootstrapped confidence intervals for NCPA threshold locations revealed strong correspondence to SED. We conclude that the choice of statistical methods for threshold detection should be matched to experimental and environmental constraints to minimize false detection rates and avoid spurious inferences regarding threshold location.


Environmental Practice | 2012

ENVIRONMENTAL REVIEWS AND CASE STUDIES: Shale Gas Development and Brook Trout: Scaling Best Management Practices to Anticipate Cumulative Effects

David R. Smith; Craig D. Snyder; Nathaniel P. Hitt; John A. Young; Stephen P. Faulkner

Shale gas development may involve trade-offs between energy development and benefits provided by natural ecosystems. However, current best management practices (BMPs) focus on mitigating localized ecological degradation. We review evidence for cumulative effects of natural gas development on brook trout (Salvelinus fontinalis) and conclude that BMPs should account for potential watershed-scale effects in addition to localized influences. The challenge is to develop BMPs in the face of uncertainty in the predicted response of brook trout to landscape-scale disturbance caused by gas extraction. We propose a decision-analysis approach to formulating BMPs in the specific case of relatively undisturbed watersheds where there is consensus to maintain brook trout populations during gas development. The decision analysis was informed by existing empirical models that describe brook trout occupancy responses to landscape disturbance and set bounds on the uncertainty in the predicted responses to shale gas development. The decision analysis showed that a high efficiency of gas development (e.g., 1 well pad per square mile and 7 acres per pad) was critical to achieving a win-win solution characterized by maintaining brook trout and maximizing extraction of available gas. This finding was invariant to uncertainty in predicted response of brook trout to watershed-level disturbance. However, as the efficiency of gas development decreased, the optimal BMP depended on the predicted response, and there was considerable potential value in discriminating among predictive models through adaptive management or research. The proposed decision-analysis framework provides an opportunity to anticipate the cumulative effects of shale gas development, account for uncertainty, and inform management decisions at the appropriate spatial scales.


Northeastern Naturalist | 2006

Aquatic Habitats of Canaan Valley, West Virginia: Diversity and Environmental Threats

Craig D. Snyder; John A. Young; Ben M. Stout

Abstract We conducted surveys of aquatic habitats during the spring and summer of 1995 in Canaan Valley, WV, to describe the diversity of aquatic habitats in the valley and identify issues that may threaten the viability of aquatic species. We assessed physical habitat and water chemistry of 126 ponds and 82 stream sites, and related habitat characteristics to landscape variables such as geology and terrain. Based on our analyses, we found two issues likely to affect the viability of aquatic populations in the valley. The first issue was acid rain and the extent to which it potentially limits the distribution of aquatic and semi-aquatic species, particularly in headwater portions of the watershed. We estimate that nearly 46%, or 56 kilometers of stream, had pH levels that would not support survival and reproduction of Salvelinuw fontinalis (brook trout), one of the most acid-tolerant fishes in the eastern US. The second issue was the influence of Castor canadensis (beaver) activity. In the Canaan Valley State Park portion of the valley, beaver have transformed 4.7 kilometers of stream (approximately 17% of the total) to pond habitat through their dam building. This has resulted in an increase in pond habitat, a decrease in stream habitat, and a fragmented stream network (i.e., beaver ponds dispersed among stream reaches). In addition, beaver have eliminated an undetermined amount of forested riparian area through their foraging activities. Depending on the perspective, beaver-mediated changes can be viewed as positive or negative. Increases in pond habitat may increase habitat heterogeneity with consequent increases in biological diversity. In contrast, flooding associated with beaver activity may eliminate lowland wetlands and associated species, create barriers to fish dispersal, and possibly contribute to low dissolved oxygen levels in the Blackwater River. We recommend that future management strategies for the wildlife refuge be viewed in the context of these two issues, and that the responses of multiple assemblages be incorporated in the design of refuge management plans.


Northeastern Naturalist | 2006

The Use of Artificial Impoundments by Two Amphibian Species in the Delaware Water Gap National Recreation Area

James T. Julian; Craig D. Snyder; John A. Young

Abstract We compared breeding activity of Ambystoma maculatum (Spotted Salamander) and Rana sylvatica (Wood Frog) in artificial impoundments to patterns in natural wetlands over a three-year period in the Delaware Water Gap National Recreation Area. Rana sylvatica were 5.6 times more likely to use natural bodies of water for breeding than artificial impoundments, while A. maculatum were 2.7 times more likely to use natural bodies of water. Both species were approximately 9 times more likely to breed in fishless bodies of water than in waters with predatory fish. Ambystoma maculatum were 6 times more likely to breed in wetlands with more stable seasonal hydroperiods, while R. sylvatica were only 2 times more likely to do so. We conclude that the high likelihood of fish presence in impoundments was the primary explanation for why both species were less likely to use impoundments than natural wetlands, while the tendency of A. maculatum to avoid natural wetlands with shorter hydroperiods explained why differences in use between pond types was more pronounced for R. sylvatica.


Journal of Geographical Systems | 2009

The use of local indicators of spatial association to improve LiDAR-derived predictions of potential amphibian breeding ponds

James T. Julian; John A. Young; John W. Jones; Craig D. Snyder; C. Wayne Wright

We examined whether spatially explicit information improved models that use LiDAR return signal intensity to discriminate in-pond habitat from terrestrial habitat at 24 amphibian breeding ponds. The addition of Local Indicators of Spatial Association (LISA) to LiDAR return intensity data significantly improved predictive models at all ponds, reduced residual error by as much as 74%, and appeared to improve models by reducing classification errors associated with types of in-pond vegetation. We conclude that LISA statistics can help maximize the information content that can be extracted from time resolved LiDAR return data in models that predict the occurrence of small, seasonal ponds.


Water Resources Research | 2017

Landform features and seasonal precipitation predict shallow groundwater influence on temperature in headwater streams

Zachary C. Johnson; Craig D. Snyder; Nathaniel P. Hitt

Headwater stream responses to climate change will depend in part on groundwater-surface water exchanges. We used linear modeling techniques to partition likely effects of shallow groundwater seepage and air temperature on stream temperatures for 79 sites in nine focal watersheds using hourly air and water temperature measurements collected during summer months from 2012-2015 in Shenandoah National Park, Virginia, USA. Shallow groundwater effects exhibited more variation within watersheds than between them, indicating the importance of reach-scale assessments and the limited capacity to extrapolate upstream groundwater influences from downstream measurements. Boosted regression tree (BRT) models revealed intricate interactions among geomorphological landform features (stream slope, elevation, network length, contributing area, and channel confinement) and seasonal precipitation patterns (winter, spring, and summer months) that together were robust predictors of spatial and temporal variation in groundwater influence on stream temperatures. The final BRT model performed well for training data and cross-validated samples (correlation = 0.984 and 0.760, respectively). Geomorphological and precipitation predictors of groundwater influence varied in their importance between watersheds, suggesting differences in spatial and temporal controls of recharge dynamics and the depth of the groundwater source. We demonstrate an application of the final BRT model to predict groundwater effects from landform and precipitation covariates at 1075 new sites distributed at 100-m increments within focal watersheds. Our study provides a framework to estimate effects of groundwater seepage on stream temperature in unsampled locations. We discuss applications for climate change research to account for groundwater-surface water interactions when projecting future thermal thresholds for stream biota.


Archive | 2017

Air-water temperature data for the study of groundwater influence on stream thermal regimes in Shenandoah National Park, Virginia

Craig D. Snyder; Nathaniel P. Hitt; Zachary C. Johnson

USGS Leetown Science Center scientists collected hourly air and water temperature data at 79 site locations within nine watersheds in Shenandoah National Park, Virginia over four water years (2012-2015). Data were collected using HOBO Pro V2 thermographs (accuracy = 0.2 degrees Celsius, drift = <0.1 degrees Celsius per year per year).

Collaboration


Dive into the Craig D. Snyder's collaboration.

Top Co-Authors

Avatar

John A. Young

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Nathaniel P. Hitt

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David R. Smith

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Zachary C. Johnson

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David P. Lemarié

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John W. Lane

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

David L. Nelms

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Eric A. White

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Martin A. Briggs

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

James T. Julian

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge