Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin A. Briggs is active.

Publication


Featured researches published by Martin A. Briggs.


Geophysical Research Letters | 2015

A physical explanation for the development of redox microzones in hyporheic flow

Martin A. Briggs; Frederick D. Day-Lewis; Jay P. Zarnetske; Judson W. Harvey

Recent observations reveal a paradox of anaerobic respiration occurring in seemingly oxic-saturated sediments. Here we demonstrate a residence time-based explanation for this paradox. Specifically, we show how microzones favorable to anaerobic respiration processes (e.g., denitrification, metal reduction, and methanogenesis) can develop in the embedded less mobile porosity of bulk-oxic hyporheic zones. Anoxic microzones develop when transport time from the streambed to the pore center exceeds a characteristic uptake time of oxygen. A two-dimensional pore-network model was used to quantify how anoxic microzones develop across a range of hyporheic flow and oxygen uptake conditions. Two types of microzones develop: flow invariant and flow dependent. The former is stable across variable hydrologic conditions, whereas the formation and extent of the latter are sensitive to flow rate and orientation. Therefore, pore-scale residence time heterogeneity, which can now be evaluated in situ, offers a simple explanation for anaerobic signals occurring in oxic pore waters.


Environmental Science & Technology | 2013

Understanding Water Column and Streambed Thermal Refugia for Endangered Mussels in the Delaware River

Martin A. Briggs; Emily Voytek; Frederick D. Day-Lewis; Donald O. Rosenberry; John W. Lane

Groundwater discharge locations along the upper Delaware River, both discrete bank seeps and diffuse streambed upwelling, may create thermal niche environments that benefit the endangered dwarf wedgemussel (Alasmidonta heterodon). We seek to identify whether discrete or diffuse groundwater inflow is the dominant control on refugia. Numerous springs and seeps were identified at all locations where dwarf wedgemussels still can be found. Infrared imagery and custom high spatial resolution fiber-optic distributed temperature sensors reveal complex thermal dynamics at one of the seeps with a relatively stable, cold groundwater plume extending along the streambed/water-column interface during midsummer. This plume, primarily fed by a discrete bank seep, was shown through analytical and numerical heat-transport modeling to dominate temperature dynamics in the region of potential habitation by the adult dwarf wedgemussel.


Freshwater Science | 2013

Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

Martin A. Briggs; Laura K. Lautz; Danielle K. Hare; Ricardo González-Pinzón

Abstract:  Small dams enhance the development of patchy microenvironments along stream corridors by trapping sediment and creating complex streambed morphologies. This patchiness drives intricate hyporheic flux patterns that govern the exchange of O2 and redox-sensitive solutes between the water column and the stream bed. We used multiple tracer techniques, naturally occurring and injected, to evaluate hyporheic flow dynamics and associated biogeochemical cycling and microbial reactivity around 2 beaver dams in Wyoming (USA). High-resolution fiber-optic distributed temperature sensing was used to collect temperature data over 9 vertical streambed profiles and to generate comprehensive vertical flux maps using 1-dimensional (1-D) heat-transport modeling. Coincident with these locations, vertical profiles of hyporheic water were collected every week and analyzed for dissolved O2, pH, dissolved organic C, and several conservative and redox-sensitive solutes. In addition, hyporheic and net stream aerobic microbial reactivity were analyzed with a constant-rate injection of the biologically sensitive resazurin (Raz) smart tracer. The combined results revealed a heterogeneous system with rates of downwelling hyporheic flow organized by morphologic unit and tightly coupled to the redox conditions of the subsurface. Principal component analysis was used to summarize the variability of all redox-sensitive species, and results indicated that hyporheic water varied from oxic-stream-like to anoxic-reduced in direct response to the hydrodynamic conditions and associated residence times. The anaerobic transition threshold predicted by the mean O2 Damköhler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.


Geophysical Research Letters | 2014

New permafrost is forming around shrinking Arctic lakes, but will it last?

Martin A. Briggs; Michelle Ann Walvoord; Jeffrey M. McKenzie; Clifford I. Voss; Frederick D. Day-Lewis; John W. Lane

Widespread lake shrinkage in cold regions has been linked to climate warming and permafrost thaw. Permafrost aggradation, however, has been observed within the margins of recently receded lakes, in seeming contradiction of climate warming. Here permafrost aggradation dynamics are examined at Twelvemile Lake, a retreating lake in interior Alaska. Observations reveal patches of recently formed permafrost within the dried lake margin, colocated with discrete bands of willow shrub. We test ecological succession, which alters shading, infiltration, and heat transport, as the driver of aggradation using numerical simulation of variably saturated groundwater flow and heat transport with phase change (i.e., freeze-thaw). Simulations support permafrost development under current climatic conditions, but only when net effects of vegetation on soil conditions are incorporated, thus pointing to the role of ecological succession. Furthermore, model results indicate that permafrost aggradation is transitory with further climate warming, as new permafrost thaws within seven decades.


Water Resources Research | 2016

Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand‐bed stream

Donald O. Rosenberry; Martin A. Briggs; Geoffrey N. Delin; Danielle K. Hare

Quantifying flow of groundwater through streambeds often is difficult due to the complexity of aquifer-scale heterogeneity combined with local-scale hyporheic exchange. We used fiber-optic distributed temperature sensing (FO-DTS), seepage meters, and vertical temperature profiling to locate, quantify, and monitor areas of focused groundwater discharge in a geomorphically simple sand-bed stream. This combined approach allowed us to rapidly focus efforts at locations where prodigious amounts of groundwater discharged to the Quashnet River on Cape Cod, Massachusetts, northeastern USA. FO-DTS detected numerous anomalously cold reaches one to several m long that persisted over two summers. Seepage meters positioned upstream, within, and downstream of 7 anomalously cold reaches indicated that rapid groundwater discharge occurred precisely where the bed was cold; median upward seepage was nearly 5 times faster than seepage measured in streambed areas not identified as cold. Vertical temperature profilers deployed next to 8 seepage meters provided diurnal-signal-based seepage estimates that compared remarkably well with seepage-meter values. Regression slope and R2 values both were near 1 for seepage ranging from 0.05 to 3.0 m d−1. Temperature-based seepage model accuracy was improved with thermal diffusivity determined locally from diurnal signals. Similar calculations provided values for streambed sediment scour and deposition at subdaily resolution. Seepage was strongly heterogeneous even along a sand-bed river that flows over a relatively uniform sand and fine-gravel aquifer. FO-DTS was an efficient method for detecting areas of rapid groundwater discharge, even in a strongly gaining river, that can then be quantified over time with inexpensive streambed thermal methods.


Water Resources Research | 2014

Dual‐domain mass‐transfer parameters from electrical hysteresis: Theory and analytical approach applied to laboratory, synthetic streambed, and groundwater experiments

Martin A. Briggs; Frederick D. Day-Lewis; John B. T. Ong; Judson W. Harvey; John W. Lane

Models of dual-domain mass transfer (DDMT) are used to explain anomalous aquifer transport behavior such as the slow release of contamination and solute tracer tailing. Traditional tracer experiments to characterize DDMT are performed at the flow path scale (meters), which inherently incorporates heterogeneous exchange processes; hence, estimated “effective” parameters are sensitive to experimental design (i.e., duration and injection velocity). Recently, electrical geophysical methods have been used to aid in the inference of DDMT parameters because, unlike traditional fluid sampling, electrical methods can directly sense less-mobile solute dynamics and can target specific points along subsurface flow paths. Here we propose an analytical framework for graphical parameter inference based on a simple petrophysical model explaining the hysteretic relation between measurements of bulk and fluid conductivity arising in the presence of DDMT at the local scale. Analysis is graphical and involves visual inspection of hysteresis patterns to (1) determine the size of paired mobile and less-mobile porosities and (2) identify the exchange rate coefficient through simple curve fitting. We demonstrate the approach using laboratory column experimental data, synthetic streambed experimental data, and field tracer-test data. Results from the analytical approach compare favorably with results from calibration of numerical models and also independent measurements of mobile and less-mobile porosity. We show that localized electrical hysteresis patterns resulting from diffusive exchange are independent of injection velocity, indicating that repeatable parameters can be extracted under varied experimental designs, and these parameters represent the true intrinsic properties of specific volumes of porous media of aquifers and hyporheic zones.


Ground Water | 2017

Using Diurnal Temperature Signals to Infer Vertical Groundwater-Surface Water Exchange

Dylan J. Irvine; Martin A. Briggs; Laura K. Lautz; Ryan P. Gordon; Jeffrey M. McKenzie; Ian Cartwright

Heat is a powerful tracer to quantify fluid exchange between surface water and groundwater. Temperature time series can be used to estimate pore water fluid flux, and techniques can be employed to extend these estimates to produce detailed plan-view flux maps. Key advantages of heat tracing include cost-effective sensors and ease of data collection and interpretation, without the need for expensive and time-consuming laboratory analyses or induced tracers. While the collection of temperature data in saturated sediments is relatively straightforward, several factors influence the reliability of flux estimates that are based on time series analysis (diurnal signals) of recorded temperatures. Sensor resolution and deployment are particularly important in obtaining robust flux estimates in upwelling conditions. Also, processing temperature time series data involves a sequence of complex steps, including filtering temperature signals, selection of appropriate thermal parameters, and selection of the optimal analytical solution for modeling. This review provides a synthesis of heat tracing using diurnal temperature oscillations, including details on optimal sensor selection and deployment, data processing, model parameterization, and an overview of computing tools available. Recent advances in diurnal temperature methods also provide the opportunity to determine local saturated thermal diffusivity, which can improve the accuracy of fluid flux modeling and sensor spacing, which is related to streambed scour and deposition. These parameters can also be used to determine the reliability of flux estimates from the use of heat as a tracer.


Water Resources Research | 2016

Actively heated high‐resolution fiber‐optic‐distributed temperature sensing to quantify streambed flow dynamics in zones of strong groundwater upwelling

Martin A. Briggs; Sean F. Buckley; Amvrossios C. Bagtzoglou; D. Dale Werkema; John W. Lane

Zones of strong groundwater upwelling to streams enhance thermal stability and moderate thermal extremes, which is particularly important to aquatic ecosystems in a warming climate. Passive thermal tracer methods used to quantify vertical upwelling rates rely on downward conduction of surface temperature signals. However, moderate to high groundwater flux rates (>−1.5 m d−1) restrict downward propagation of diurnal temperature signals, and therefore the applicability of several passive thermal methods. Active streambed heating from within high-resolution fiber-optic temperature sensors (A-HRTS) has the potential to define multidimensional fluid-flux patterns below the extinction depth of surface thermal signals, allowing better quantification and separation of local and regional groundwater discharge. To demonstrate this concept, nine A-HRTS were emplaced vertically into the streambed in a grid with ∼0.40 m lateral spacing at a stream with strong upward vertical flux in Mashpee, Massachusetts, USA. Long-term (8–9 h) heating events were performed to confirm the dominance of vertical flow to the 0.6 m depth, well below the extinction of ambient diurnal signals. To quantify vertical flux, short-term heating events (28 min) were performed at each A-HRTS, and heat-pulse decay over vertical profiles was numerically modeled in radial two dimension (2-D) using SUTRA. Modeled flux values are similar to those obtained with seepage meters, Darcy methods, and analytical modeling of shallow diurnal signals. We also observed repeatable differential heating patterns along the length of vertically oriented sensors that may indicate sediment layering and hyporheic exchange superimposed on regional groundwater discharge.


Ground Water | 2016

1DTempPro V2: New Features for Inferring Groundwater/Surface-Water Exchange

Franklin W. Koch; Emily B. Voytek; Frederick D. Day-Lewis; Richard W. Healy; Martin A. Briggs; John W. Lane; D. Dale Werkema

A new version of the computer program 1DTempPro extends the original code to include new capabilities for (1) automated parameter estimation, (2) layer heterogeneity, and (3) time-varying specific discharge. The code serves as an interface to the U.S. Geological Survey model VS2DH and supports analysis of vertical one-dimensional temperature profiles under saturated flow conditions to assess groundwater/surface-water exchange and estimate hydraulic conductivity for cases where hydraulic head is known.


Geophysical Research Letters | 2017

Pore-Network Modeling of the Electrical Signature of Solute Transport in Dual-Domain Media

Frederick D. Day-Lewis; Niklas Linde; Roy Haggerty; Kamini Singha; Martin A. Briggs

Dual-domain models are used to explain anomalous solute-transport behavior observed in diverse hydrologic settings and applications, from groundwater remediation to hyporheic exchange. To constrain such models, new methods are needed with sensitivity to both immobile and mobile domains. Recent experiments indicate that dual-domain transport of ionic tracers has an observable geoelectrical signature, appearing as a non-linear, hysteretic relation between paired bulk and fluid electrical conductivity. Here, we present a mechanistic explanation for this geoelectrical signature and evaluate assumptions underlying a previously published petrophysical model for bulk conductivity in dual-domain media. Pore network modeling of fluid flow, solute transport, and electrical conduction (1) verifies the geoelectrical signature of dual-domain transport, (2) reveals limitations of the previously used petrophysical model, and (3) demonstrates that a new petrophysical model, based on differential-effective media theory, closely approximates the simulated bulk/fluid conductivity relation. These findings underscore the potential of geophysically based calibration of dual-domain models.

Collaboration


Dive into the Martin A. Briggs's collaboration.

Top Co-Authors

Avatar

Frederick D. Day-Lewis

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

John W. Lane

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Dale Werkema

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Donald O. Rosenberry

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce J. Peterson

Marine Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge