Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig J. Hogan is active.

Publication


Featured researches published by Craig J. Hogan.


The Astrophysical Journal | 2003

Cosmological Results from High-z Supernovae* **

John L. Tonry; Brian Paul Schmidt; Brian J. Barris; Pablo Candia; Peter M. Challis; Alejandro Clocchiatti; Alison L. Coil; Alexei V. Filippenko; Peter Marcus Garnavich; Craig J. Hogan; Stephen T. Holland; Saurabh W. Jha; Robert P. Kirshner; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Mark M. Phillips; Adam G. Riess; Robert A. Schommer; R. Chris Smith; Jesper Sollerman; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff

The High-z Supernova Search Team has discovered and observed eight new supernovae in the redshift interval z = 0.3-1.2. These independent observations, analyzed by similar but distinct methods, confirm the results of Riess and Perlmutter and coworkers that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed Type Ia supernovae (SNe Ia) to z ≈ 1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of (1.4 ± 0.5) × 10-4 h3 Mpc-3 yr-1 at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w = -1, then H0t0 = 0.96 ± 0.04, and ΩΛ - 1.4ΩM = 0.35 ± 0.14. Including the constraint of a flat universe, we find ΩM = 0.28 ± 0.05, independent of any large-scale structure measurements. Adopting a prior based on the Two Degree Field (2dF) Redshift Survey constraint on ΩM and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48 -1, we obtain w < -0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF Redshift Survey.


The Astrophysical Journal | 1998

The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae*

Brian Paul Schmidt; Nicholas B. Suntzeff; M. M. Phillips; Robert A. Schommer; Alejandro Clocchiatti; Robert P. Kirshner; Peter Marcus Garnavich; Peter M. Challis; Bruno Leibundgut; Jason Spyromilio; Adam G. Riess; Alexei V. Filippenko; Mario Hamuy; R. Chris Smith; Craig J. Hogan; Christopher W. Stubbs; Alan Hodgdon Diercks; David J. Reiss; R. L. Gilliland; John L. Tonry; Jose Manuel Campillos Maza; A. Dressler; Jeremy R. Walsh; Robin Ciardullo

The High-Z Supernova Search is an international collaboration to discover and monitor Type Ia supernovae (SNe Ia) at z > 0.2 with the aim of measuring cosmic deceleration and global curvature. Our collaboration has pursued a basic understanding of supernovae in the nearby universe, discovering and observing a large sample of objects and developing methods to measure accurate distances with SNe Ia. This paper describes the extension of this program to z ≥ 0.2, outlining our search techniques and follow-up program. We have devised high-throughput filters that provide accurate two-color rest frame B and V light curves of SNe Ia, enabling us to produce precise, extinction-corrected luminosity distances in the range 0.25 M=-0.2 -->−0.8+1.0 if ΩΛ = 0. For a spatially flat universe composed of normal matter and a cosmological constant, we find Ω -->M=0.4 -->−0.4+0.5, Ω


The Astrophysical Journal | 1998

THE COSMIC BARYON BUDGET

Masataka Fukugita; Craig J. Hogan; P. J. E. Peebles

{Λ}


Astronomy and Astrophysics | 2014

Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples

M. Betoule; Richard Kessler; J. Guy; Jennifer J. Mosher; D. Hardin; Rahul Biswas; P. Astier; P. El-Hage; M. Konig; S. E. Kuhlmann; John P. Marriner; R. Pain; Nicolas Regnault; C. Balland; Bruce A. Bassett; Peter J. Brown; Heather Campbell; R. G. Carlberg; F. Cellier-Holzem; D. Cinabro; A. Conley; C. B. D'Andrea; D. L. DePoy; Mamoru Doi; Richard S. Ellis; S. Fabbro; A. V. Filippenko; Ryan J. Foley; Joshua A. Frieman; D. Fouchez

-->=0.6 -->−0.5+0.4. We demonstrate that with a sample of ~30 objects, we should be able to determine relative luminosity distances over the range 0 < z < 0.5 with sufficient precision to measure ΩM with an uncertainty of ±0.2.


The Astrophysical Journal | 1998

SUPERNOVA LIMITS ON THE COSMIC EQUATION OF STATE

Peter Marcus Garnavich; Saurabh W. Jha; Peter M. Challis; Alejandro Clocchiatti; Alan Hodgdon Diercks; Alexei V. Filippenko; R. L. Gilliland; Craig J. Hogan; Robert P. Kirshner; Bruno Leibundgut; Mark M. Phillips; David J. Reiss; Adam G. Riess; Brian Paul Schmidt; Robert A. Schommer; R. Chris Smith; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; John L. Tonry; Sean M. Carroll

We present an estimate of the global budget of baryons in all states, with conservative estimates of the uncertainties, based on all relevant information we have been able to marshal. Most of the baryons today are still in the form of ionized gas, which contributes a mean density uncertain by a factor of about 4. Stars and their remnants are a relatively minor component, comprising for our best-guess plasma density only about 17% of the baryons, while populations contributing most of the blue starlight comprise less than 5%. The formation of galaxies and of stars within them appears to be a globally inefficient process. The sum over our budget, expressed as a fraction of the critical EinsteinEde Sitter density, is in the range with a best guess of (at Hubble constant 70 km 0.007 ( ) B ( 0.041, ) B D 0.021 s~1 Mpc~1). The central value agrees with the prediction from the theory of light element production and with measures of the density of intergalactic plasma at redshift z D 3. This apparent concordance suggests that we may be close to a complete survey of the major states of the baryons. Subject headings: cosmology: observations E elementary particles E galaxies: fundamental parameters


The Astrophysical Journal | 1998

Constraints on Cosmological Models from Hubble Space Telescope Observations of High-z Supernovae

Peter Marcus Garnavich; Robert P. Kirshner; Peter M. Challis; John L. Tonry; R. L. Gilliland; Ryan Christopher Smith; Alejandro Clocchiatti; Alan Hodgdon Diercks; A. V. Filippenko; Mario Hamuy; Craig J. Hogan; Bruno Leibundgut; Mark M. Phillips; David J. Reiss; Adam G. Riess; Brian Paul Schmidt; Robert A. Schommer; Jason Spyromilio; Christopher W. Stubbs; Nicholas B. Suntzeff; Lisa A. Wells

Aims. We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z< 0.1), all three seasons from the SDSS-II (0.05 <z< 0.4), and three years from SNLS (0.2 <z< 1), and it totals 740 spectroscopically confirmed type Ia supernovae with high-quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: 1) the addition of the full SDSS-II spectroscopically-confirmed SN Ia sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN Ia light curves. Results. We produce recalibrated SN Ia light curves and associated distances for the SDSS-II and SNLS samples. The large SDSS-II sample provides an effective, independent, low-z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low-z SN sample. For a flat ΛCDM cosmology, we find Ωm =0.295 ± 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8σ (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark-energy equation of state parameter w =−1.018 ± 0.057 (stat+sys) for a flat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: w =−1.027 ± 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey - II:supernova survey: technical summary

Joshua A. Frieman; Bruce A. Bassett; Andrew Cameron Becker; Changsu Choi; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Myungshin Im; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Masao Sako; Donald P. Schneider; Mathew Smith; Naohiro Takanashi

We use Type Ia supernovae studied by the High-z Supernova Search Team to constrain the properties of an energy component that may have contributed to accelerating the cosmic expansion. We find that for a flat geometry the equation-of-state parameter for the unknown component, αx = Px/ρx, must be less than -0.55 (95% confidence) for any value of Ωm, and it is further limited to αx < -0.60 (95% confidence) if Ωm is assumed to be greater than 0.1. These values are inconsistent with the unknown component being topological defects such as domain walls, strings, or textures. The supernova (SN) data are consistent with a cosmological constant (αx = -1) or a scalar field that has had, on average, an equation-of-state parameter similar to the cosmological constant value of -1 over the redshift range of z ≈ 1 to the present. SN and cosmic microwave background observations give complementary constraints on the densities of matter and the unknown component. If only matter and vacuum energy are considered, then the current combined data sets provide direct evidence for a spatially flat universe with Ωtot = Ωm + ΩΛ = 0.94 ± 0.26 (1 σ).


The Astronomical Journal | 2008

The Sloan Digital Sky Survey-II Supernova Survey: Search Algorithm and Follow-up Observations

M. Sako; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Ben Dilday; Mamoru Doi; Joshua A. Frieman; Peter Marcus Garnavich; Craig J. Hogan; Jon A. Holtzman; Saurabh W. Jha; Richard Kessler; Kohki Konishi; Hubert Lampeitl; John P. Marriner; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Donald P. Schneider; Mathew Smith; Mark SubbaRao; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden; Naoki Yasuda

We have coordinated Hubble Space Telescope (HST) photometry with ground-based discovery for three supernovae: Type Ia supernovae near z ≈ 0.5 (SN 1997ce, SN 1997cj) and a third event at z = 0.97 (SN 1997ck). The superb spatial resolution of HST separates each supernova from its host galaxy and leads to good precision in the light curves. We use these light curves and relations between luminosity, light-curve shape, and color calibrated from low-z samples to derive relative luminosity distances that are accurate to 10% at z ≈ 0.5 and 20% at z = 1. When the HST sample is combined with the distance to SN 1995K (z = 0.48), analyzed by the same precepts, we find that matter alone is insufficient to produce a flat universe. Specifically, for Ωm+ΩΛ = 1, Ωm is less than 1 with more than 95% confidence, and our best estimate of Ωm is -0.1±0.5 if ΩΛ = 0. Although this result is based on a very small sample whose systematics remain to be explored, it demonstrates the power of HST measurements for high-redshift supernovae.


Reviews of Modern Physics | 2000

Why the universe is just so

Craig J. Hogan

The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 sq. deg. The survey region is a stripe 2.5° wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for the discovery of new objects. Supernova imaging observations are being acquired between September 1 and November 30 of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.


The Astronomical Journal | 2008

The Sloan Digital Sky Survey-II Photometry and Supernova IA Light Curves from the 2005 Data

Jon A. Holtzman; John P. Marriner; Richard Kessler; M. Sako; Ben Dilday; Joshua A. Frieman; Donald P. Schneider; Bruce A. Bassett; Andrew Cameron Becker; D. Cinabro; F. DeJongh; D. L. DePoy; Mamoru Doi; Peter Marcus Garnavich; Craig J. Hogan; Saurabh W. Jha; Kohki Konishi; Hubert Lampeitl; J. L. Marshall; David P. McGinnis; Gajus A. Miknaitis; Robert C. Nichol; Jose Luis Palacio Prieto; Adam G. Riess; Michael W. Richmond; Roger W. Romani; Mathew Smith; Naohiro Takanashi; Kouichi Tokita; Kurt van der Heyden

The Sloan Digital Sky Survey-II Supernova Survey has identified a large number of new transient sources in a 300 deg2 region along the celestial equator during its first two seasons of a three-season campaign. Multi-band (ugriz) light curves were measured for most of the sources, which include solar system objects, galactic variable stars, active galactic nuclei, supernovae (SNe), and other astronomical transients. The imaging survey is augmented by an extensive spectroscopic follow-up program to identify SNe, measure their redshifts, and study the physical conditions of the explosions and their environment through spectroscopic diagnostics. During the survey, light curves are rapidly evaluated to provide an initial photometric type of the SNe, and a selected sample of sources are targeted for spectroscopic observations. In the first two seasons, 476 sources were selected for spectroscopic observations, of which 403 were identified as SNe. For the type Ia SNe, the main driver for the survey, our photometric typing and targeting efficiency is 90%. Only 6% of the photometric SN Ia candidates were spectroscopically classified as non-SN Ia instead, and the remaining 4% resulted in low signal-to-noise, unclassified spectra. This paper describes the search algorithm and the software, and the real-time processing of the SDSS imaging data. We also present the details of the supernova candidate selection procedures and strategies for follow-up spectroscopic and imaging observations of the discovered sources.

Collaboration


Dive into the Craig J. Hogan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saurabh W. Jha

University of Notre Dame

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon A. Holtzman

New Mexico State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Cinabro

Wayne State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge