Craig Kollman
National Marrow Donor Program
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Craig Kollman.
The New England Journal of Medicine | 2008
William V. Tamborlane; Roy W. Beck; Bruce W. Bode; Bruce Buckingham; H. Peter Chase; Robert Clemons; Rosanna Fiallo-Scharer; Larry A. Fox; Lisa K. Gilliam; Irl B. Hirsch; Elbert S. Huang; Craig Kollman; Aaron J. Kowalski; Lori Laffel; Jean M. Lawrence; Joyce M. Lee; Nelly Mauras; Michael J. O'Grady; Katrina J. Ruedy; Michael Tansey; Eva Tsalikian; Stuart A. Weinzimer; Darrell M. Wilson; Howard Wolpert; Tim Wysocki; Dongyuan Xing; Laurel Messer; Victoria Gage; P. Burdick; K. Milaszewski
BACKGROUND The value of continuous glucose monitoring in the management of type 1 diabetes mellitus has not been determined. METHODS In a multicenter clinical trial, we randomly assigned 322 adults and children who were already receiving intensive therapy for type 1 diabetes to a group with continuous glucose monitoring or to a control group performing home monitoring with a blood glucose meter. All the patients were stratified into three groups according to age and had a glycated hemoglobin level of 7.0 to 10.0%. The primary outcome was the change in the glycated hemoglobin level at 26 weeks. RESULTS The changes in glycated hemoglobin levels in the two study groups varied markedly according to age group (P=0.003), with a significant difference among patients 25 years of age or older that favored the continuous-monitoring group (mean difference in change, -0.53%; 95% confidence interval [CI], -0.71 to -0.35; P<0.001). The between-group difference was not significant among those who were 15 to 24 years of age (mean difference, 0.08; 95% CI, -0.17 to 0.33; P=0.52) or among those who were 8 to 14 years of age (mean difference, -0.13; 95% CI, -0.38 to 0.11; P=0.29). Secondary glycated hemoglobin outcomes were better in the continuous-monitoring group than in the control group among the oldest and youngest patients but not among those who were 15 to 24 years of age. The use of continuous glucose monitoring averaged 6.0 or more days per week for 83% of patients 25 years of age or older, 30% of those 15 to 24 years of age, and 50% of those 8 to 14 years of age. The rate of severe hypoglycemia was low and did not differ between the two study groups; however, the trial was not powered to detect such a difference. CONCLUSIONS Continuous glucose monitoring can be associated with improved glycemic control in adults with type 1 diabetes. Further work is needed to identify barriers to effectiveness of continuous monitoring in children and adolescents. (ClinicalTrials.gov number, NCT00406133.)
JAMA Neurology | 2008
Michael C. Brodsky; Sarkis Nazarian; Silvia Orengo-Nania; George J. Hutton; Edward G. Buckley; E. Wayne Massey; M. Tariq Bhatti; Melvin Greer; James Goodwin; Michael Wall; Peter J. Savino; Thomas Leist; Neil R. Miller; David N. Irani; Jonathan D. Trobe; Wayne T. Cornblath; David I. Kaufman; Eric Eggenberger; Mark J. Kupersmith; William T. Shults; Leslie McAllister; Steve Hamilton; Roy W. Beck; Mariya Dontchev; Robin L. Gal; Craig Kollman; John L. Keltner; Craig H. Smith
OBJECTIVE To assess the risk of developing multiple sclerosis (MS) after optic neuritis and the factors predictive of high and low risk. DESIGN Subjects in the Optic Neuritis Treatment Trial, who were enrolled between July 1, 1988, and June 30, 1991, were followed up prospectively for 15 years, with the final examination in 2006. SETTING Neurologic and ophthalmologic examinations at 13 clinical sites. PARTICIPANTS Three hundred eighty-nine subjects with acute optic neuritis. MAIN OUTCOME MEASURES Development of MS and neurologic disability assessment. RESULTS The cumulative probability of developing MS by 15 years after onset of optic neuritis was 50% (95% confidence interval, 44%-56%) and strongly related to presence of lesions on a baseline non-contrast-enhanced magnetic resonance imaging (MRI) of the brain. Twenty-five percent of patients with no lesions on baseline brain MRI developed MS during follow-up compared with 72% of patients with 1 or more lesions. After 10 years, the risk of developing MS was very low for patients without baseline lesions but remained substantial for those with lesions. Among patients without lesions on MRI, baseline factors associated with a substantially lower risk for MS included male sex, optic disc swelling, and certain atypical features of optic neuritis. CONCLUSIONS The presence of brain MRI abnormalities at the time of an optic neuritis attack is a strong predictor of the 15-year risk of MS. In the absence of MRI-detected lesions, male sex, optic disc swelling, and atypical clinical features of optic neuritis are associated with a low likelihood of developing MS. This natural history information is important when considering prophylactic treatment for MS at the time of a first acute onset of optic neuritis.
Diabetes Care | 2009
Roy W. Beck; Irl B. Hirsch; Lori Laffel; William V. Tamborlane; Bruce W. Bode; Bruce Buckingham; Peter Chase; Robert Clemons; Rosanna Fiallo-Scharer; Larry A. Fox; Lisa K. Gilliam; Elbert S. Huang; Craig Kollman; Aaron J. Kowalski; Jean M. Lawrence; Joyce M. Lee; Mauras N; Michael J. O'Grady; Katrina J. Ruedy; Michael Tansey; Eva Tsalikian; Stuart A. Weinzimer; Darrell Wilson; Howard Wolpert; Timothy Wysocki; Dongyuan Xing
OBJECTIVE The potential benefits of continuous glucose monitoring (CGM) in the management of adults and children with well-controlled type 1 diabetes have not been examined. RESEARCH DESIGN AND METHODS A total of 129 adults and children with intensively treated type 1 diabetes (age range 8–69 years) and A1C <7.0% were randomly assigned to either continuous or standard glucose monitoring for 26 weeks. The main study outcomes were time with glucose level ≤70 mg/dl, A1C level, and severe hypoglycemic events. RESULTS At 26 weeks, biochemical hypoglycemia (≤70 mg/dl) was less frequent in the CGM group than in the control group (median 54 vs. 91 min/day), but the difference was not statistically significant (P = 0.16). Median time with a glucose level ≤60 mg/dl was 18 versus 35 min/day, respectively (P = 0.05). Time out of range (≤70 or >180 mg/dl) was significantly lower in the CGM group than in the control group (377 vs. 491 min/day, P = 0.003). There was a significant treatment group difference favoring the CGM group in mean A1C at 26 weeks adjusted for baseline (P < 0.001). One or more severe hypoglycemic events occurred in 10 and 11% of the two groups, respectively (P = 1.0). Four outcome measures combining A1C and hypoglycemia data favored the CGM group in comparison with the control group (P < 0.001, 0.007, 0.005, and 0.003). CONCLUSIONS Most outcomes, including those combining A1C and hypoglycemia, favored the CGM group. The weight of evidence suggests that CGM is beneficial for individuals with type 1 diabetes who have already achieved excellent control with A1C <7.0%.
Archives of Ophthalmology | 2009
Roy W. Beck; Allison R. Edwards; Lloyd Paul Aiello; Neil M. Bressler; Frederick L. Ferris; Adam R. Glassman; M. Elizabeth Hartnett; Michael S. Ip; Judy E. Kim; Craig Kollman
OBJECTIVE To report 3-year outcomes of patients who participated in a randomized trial evaluating 1-mg and 4-mg doses of preservative-free intravitreal triamcinolone compared with focal/grid photocoagulation for treatment of diabetic macular edema. METHODS Eyes with diabetic macular edema and visual acuities of 20/40 to 20/320 were randomly assigned to focal/grid photocoagulation or 1 mg or 4 mg of triamcinolone. At the conclusion of the trial, 3-year follow-up data were available in 306 eyes. RESULTS Between 2 years (time of the primary outcome) and 3 years, more eyes improved than worsened in all 3 treatment groups. Change in visual acuity letter score from baseline to 3 years was +5 in the laser group and 0 in each triamcinolone group. The cumulative probability of cataract surgery by 3 years was 31%, 46%, and 83% in the laser and 1-mg and 4-mg triamcinolone groups, respectively. Intraocular pressure increased by more than 10 mm Hg at any visit in 4%, 18%, and 33% of eyes, respectively. CONCLUSIONS Results in a subset of randomized subjects who completed the 3-year follow-up are consistent with previously published 2-year results and do not indicate a long-term benefit of intravitreal triamcinolone relative to focal/grid photocoagulation in patients with diabetic macular edema similar to those studied in this clinical trial. Most eyes receiving 4 mg of triamcinolone as given in this study are likely to require cataract surgery. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00367133.
BMJ | 2011
Roman Hovorka; Kavita Kumareswaran; Julie Harris; Janet M. Allen; Daniela Elleri; Dongyuan Xing; Craig Kollman; Marianna Nodale; Helen R. Murphy; David B. Dunger; Stephanie A. Amiel; Simon Heller; Malgorzata E. Wilinska; Mark L. Evans
Objective To compare the safety and efficacy of overnight closed loop delivery of insulin (artificial pancreas) with conventional insulin pump therapy in adults with type 1 diabetes. Design Two sequential, open label, randomised controlled crossover, single centre studies. Setting Clinical research facility. Participants 24 adults (10 men, 14 women) with type 1 diabetes, aged 18-65, who had used insulin pump therapy for at least three months: 12 were tested after consuming a medium sized meal and the other 12 after consuming a larger meal accompanied by alcohol. Intervention During overnight closed loop delivery, sensor measurements of glucose were fed into a computer algorithm, which advised on insulin pump infusion rates at 15 minute intervals. During control nights, conventional insulin pump settings were applied. One study compared closed loop delivery of insulin with conventional pump therapy after a medium sized evening meal (60 g of carbohydrates) at 1900, depicting the scenario of “eating in.” The other study was carried out after a later large evening meal (100 g of carbohydrates) at 2030, accompanied by white wine (0.75 g/kg ethanol) and depicted the scenario of “eating out.” Main outcome measures The primary outcome was the time plasma glucose levels were in target (3.91-8.0 mmol/L) during closed loop delivery and a comparable control period. Secondary outcomes included pooled data analysis and time plasma glucose levels were below target (≤3.9 mmol/L). Results For the eating in scenario, overnight closed loop delivery of insulin increased the time plasma glucose levels were in target by a median 15% (interquartile range 3-35%), P=0.002. For the eating out scenario, closed loop delivery increased the time plasma glucose levels were in target by a median 28% (2-39%), P=0.01. Analysis of pooled data showed that the overall time plasma glucose was in target increased by a median 22% (3-37%) with closed loop delivery (P<0.001). Closed loop delivery reduced overnight time spent hypoglycaemic (plasma glucose ≤3.9 mmol/L) by a median 3% (0-20%), P=0.04, and eliminated plasma glucose concentrations below 3.0 mmol/L after midnight. Conclusion These two small crossover trials suggest that closed loop delivery of insulin may improve overnight control of glucose levels and reduce the risk of nocturnal hypoglycaemia in adults with type 1 diabetes. Trial registration ClinicalTrials.gov NCT00910767 and NCT00944619.
The New England Journal of Medicine | 2015
Hood Thabit; Martin Tauschmann; Janet Macdonald Allen; Lalantha Leelarathna; Sara Hartnell; Malgorzata E Wilinska; Carlo L. Acerini; Sibylle Dellweg; Carsten Benesch; Lutz Heinemann; Julia K. Mader; Manuel Holzer; Harald Kojzar; Jane Exall; James Yong; Jennifer Pichierri; Katharine Barnard; Craig Kollman; Peiyao Cheng; Peter C. Hindmarsh; Fiona Campbell; Sabine Arnolds; Thomas R. Pieber; Mark L. Evans; David B. Dunger; Roman Hovorka
BACKGROUND The feasibility, safety, and efficacy of prolonged use of an artificial beta cell (closed-loop insulin-delivery system) in the home setting have not been established. METHODS In two multicenter, crossover, randomized, controlled studies conducted under free-living home conditions, we compared closed-loop insulin delivery with sensor-augmented pump therapy in 58 patients with type 1 diabetes. The closed-loop system was used day and night by 33 adults and overnight by 25 children and adolescents. Participants used the closed-loop system for a 12-week period and sensor-augmented pump therapy (control) for a similar period. The primary end point was the proportion of time that the glucose level was between 70 mg and 180 mg per deciliter for adults and between 70 mg and 145 mg per deciliter for children and adolescents. RESULTS Among adults, the proportion of time that the glucose level was in the target range was 11.0 percentage points (95% confidence interval [CI], 8.1 to 13.8) greater with the use of the closed-loop system day and night than with control therapy (P<0.001). The mean glucose level was lower during the closed-loop phase than during the control phase (difference, -11 mg per deciliter; 95% CI, -17 to -6; P<0.001), as were the area under the curve for the period when the glucose level was less than 63 mg per deciliter (39% lower; 95% CI, 24 to 51; P<0.001) and the mean glycated hemoglobin level (difference, -0.3%; 95% CI, -0.5 to -0.1; P=0.002). Among children and adolescents, the proportion of time with the nighttime glucose level in the target range was higher during the closed-loop phase than during the control phase (by 24.7 percentage points; 95% CI, 20.6 to 28.7; P<0.001), and the mean nighttime glucose level was lower (difference, -29 mg per deciliter; 95% CI, -39 to -20; P<0.001). The area under the curve for the period in which the day-and-night glucose levels were less than 63 mg per deciliter was lower by 42% (95% CI, 4 to 65; P=0.03). Three severe hypoglycemic episodes occurred during the closed-loop phase when the closed-loop system was not in use. CONCLUSIONS Among patients with type 1 diabetes, 12-week use of a closed-loop system, as compared with sensor-augmented pump therapy, improved glucose control, reduced hypoglycemia, and, in adults, resulted in a lower glycated hemoglobin level. (Funded by the JDRF and others; AP@home04 and APCam08 ClinicalTrials.gov numbers, NCT01961622 and NCT01778348.).
Diabetes Care | 2009
Roy W. Beck; Bruce Buckingham; Kellee M. Miller; Howard Wolpert; Dongyuan Xing; Jennifer M. Block; Chase Hp; Irl B. Hirsch; Craig Kollman; Lori Laffel; Jean M. Lawrence; Kerry Milaszewski; Katrina J. Ruedy; William V. Tamborlane
OBJECTIVE To evaluate factors associated with successful use of continuous glucose monitoring (CGM) among participants with intensively treated type 1 diabetes in the Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Randomized Clinical Trial. RESEARCH DESIGN AND METHODS The 232 participants randomly assigned to the CGM group (165 with baseline A1C ≥7.0% and 67 with A1C <7.0%) were asked to use CGM on a daily basis. The associations of baseline factors and early CGM use with CGM use ≥6 days/week in the 6th month and with change in A1C from baseline to 6 months were evaluated in regression models. RESULTS The only baseline factors found to be associated with greater CGM use in month 6 were age ≥25 years (P < 0.001) and more frequent self-reported prestudy blood glucose meter measurements per day (P < 0.001). CGM use and the percentage of CGM glucose values between 71 and 180 mg/dl during the 1st month were predictive of CGM use in month 6 (P < 0.001 and P = 0.002, respectively). More frequent CGM use was associated with a greater reduction in A1C from baseline to 6 months (P < 0.001), a finding present in all age-groups. CONCLUSIONS After 6 months, near-daily CGM use is more frequent in intensively treated adults with type 1 diabetes than in children and adolescents, although in all age-groups near-daily CGM use is associated with a similar reduction in A1C. Frequency of blood glucose meter monitoring and initial CGM use may help predict the likelihood of long-term CGM benefit in intensively treated patients with type 1 diabetes of all ages.
Diabetes Care | 2014
Roman Hovorka; Daniela Elleri; Hood Thabit; Janet Macdonald Allen; Lalantha Leelarathna; Ranna El-Khairi; Kavita Kumareswaran; Karen Caldwell; Peter Calhoun; Craig Kollman; Helen R. Murphy; Carlo L. Acerini; Malgorzata E Wilinska; Marianna Nodale; David B. Dunger
OBJECTIVE To evaluate feasibility, safety, and efficacy of overnight closed-loop insulin delivery in free-living youth with type 1 diabetes. RESEARCH DESIGN AND METHODS Overnight closed loop was evaluated at home by 16 pump-treated adolescents with type 1 diabetes aged 12–18 years. Over a 3-week period, overnight insulin delivery was directed by a closed-loop system, and on another 3-week period sensor-augmented therapy was applied. The order of interventions was random. The primary end point was time when adjusted sensor glucose was between 3.9 and 8.0 mmol/L from 2300 to 0700 h. RESULTS Closed loop was constantly applied over at least 4 h on 269 nights (80%); sensor data were collected over at least 4 h on 282 control nights (84%). Closed loop increased time spent with glucose in target by a median 15% (interquartile range −9 to 43; P < 0.001). Mean overnight glucose was reduced by a mean 14 (SD 58) mg/dL (P < 0.001). Time when glucose was <70 mg/dL was low in both groups, but nights with glucose <63 mg/dL for at least 20 min were less frequent during closed loop (10 vs. 17%; P = 0.01). Despite lower total daily insulin doses by a median 2.3 (interquartile range −4.7 to 9.3) units (P = 0.009), overall 24-h glucose was reduced by a mean 9 (SD 41) mg/dL (P = 0.006) during closed loop. CONCLUSIONS Unsupervised home use of overnight closed loop in adolescents with type 1 diabetes is safe and feasible. Glucose control was improved during the day and night with fewer episodes of nocturnal hypoglycemia.
Diabetes Care | 2012
Nelly Mauras; Roy W. Beck; Dongyuan Xing; Katrina J. Ruedy; Bruce Buckingham; Michael Tansey; Neil H. White; Stuart A. Weinzimer; William V. Tamborlane; Craig Kollman
OBJECTIVE Continuous glucose monitoring (CGM) has been demonstrated to improve glycemic control in adults with type 1 diabetes but less so in children. We designed a study to assess CGM benefit in young children aged 4 to 9 years with type 1 diabetes. RESEARCH DESIGN AND METHODS After a run-in phase, 146 children with type 1 diabetes (mean age 7.5 ± 1.7 years, 64% on pumps, median diabetes duration 3.5 years) were randomly assigned to CGM or to usual care. The primary outcome was reduction in HbA1c at 26 weeks by ≥0.5% without the occurrence of severe hypoglycemia. RESULTS The primary outcome was achieved by 19% in the CGM group and 28% in the control group (P = 0.17). Mean change in HbA1c was −0.1% in each group (P = 0.79). Severe hypoglycemia rates were similarly low in both groups. CGM wear decreased over time, with only 41% averaging at least 6 days/week at 26 weeks. There was no correlation between CGM use and change in HbA1c (rs = −0.09, P = 0.44). CGM wear was well tolerated, and parental satisfaction with CGM was high. However, parental fear of hypoglycemia was not reduced. CONCLUSIONS CGM in 4- to 9-year-olds did not improve glycemic control despite a high degree of parental satisfaction with CGM. We postulate that this finding may be related in part to limited use of the CGM glucose data in day-to-day management and to an unremitting fear of hypoglycemia. Overcoming the barriers that prevent integration of these critical glucose data into day-to-day management remains a challenge.
JAMA | 2017
Roy W. Beck; Tonya D. Riddlesworth; Katrina J. Ruedy; Andrew J. Ahmann; Richard M. Bergenstal; Stacie Haller; Craig Kollman; Davida F. Kruger; Janet B. McGill; William H. Polonsky; Elena Toschi; Howard Wolpert; David Price
Importance Previous clinical trials showing the benefit of continuous glucose monitoring (CGM) in the management of type 1 diabetes predominantly have included adults using insulin pumps, even though the majority of adults with type 1 diabetes administer insulin by injection. Objective To determine the effectiveness of CGM in adults with type 1 diabetes treated with insulin injections. Design, Setting, and Participants Randomized clinical trial conducted between October 2014 and May 2016 at 24 endocrinology practices in the United States that included 158 adults with type 1 diabetes who were using multiple daily insulin injections and had hemoglobin A1c (HbA1c) levels of 7.5% to 9.9%. Interventions Random assignment 2:1 to CGM (n = 105) or usual care (control group; n = 53). Main Outcomes and Measures Primary outcome measure was the difference in change in central-laboratory–measured HbA1c level from baseline to 24 weeks. There were 18 secondary or exploratory end points, of which 15 are reported in this article, including duration of hypoglycemia at less than 70 mg/dL, measured with CGM for 7 days at 12 and 24 weeks. Results Among the 158 randomized participants (mean age, 48 years [SD, 13]; 44% women; mean baseline HbA1c level, 8.6% [SD, 0.6%]; and median diabetes duration, 19 years [interquartile range, 10-31 years]), 155 (98%) completed the study. In the CGM group, 93% used CGM 6 d/wk or more in month 6. Mean HbA1c reduction from baseline was 1.1% at 12 weeks and 1.0% at 24 weeks in the CGM group and 0.5% and 0.4%, respectively, in the control group (repeated-measures model P < .001). At 24 weeks, the adjusted treatment-group difference in mean change in HbA1c level from baseline was –0.6% (95% CI, –0.8% to –0.3%; P < .001). Median duration of hypoglycemia at less than <70 mg/dL was 43 min/d (IQR, 27-69) in the CGM group vs 80 min/d (IQR, 36-111) in the control group (P = .002). Severe hypoglycemia events occurred in 2 participants in each group. Conclusions and Relevance Among adults with type 1 diabetes who used multiple daily insulin injections, the use of CGM compared with usual care resulted in a greater decrease in HbA1c level during 24 weeks. Further research is needed to assess longer-term effectiveness, as well as clinical outcomes and adverse effects. Trial Registration clinicaltrials.gov Identifier: NCT02282397