Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig McCormick is active.

Publication


Featured researches published by Craig McCormick.


The FASEB Journal | 2012

Influenza A virus inhibits cytoplasmic stress granule formation

Denys A. Khaperskyy; Todd F. Hatchette; Craig McCormick

An important component of the mammalian stress response is the reprogramming of translation. A variety of stresses trigger abrupt polysome disassembly and the accumulation of stalled translation preinitiation complexes. These complexes nucleate cytoplasmic stress granules (SGs), sites of mRNA triage in which mRNAs from disassembling polysomes are sorted and the fates of individual transcripts are determined. Here, we demonstrate that influenza A virus (IAV) actively suppresses SG formation during infection, thereby allowing translation of viral mRNAs. Complete inhibition of SG formation is dependent on the function of the viral nonstructural protein 1 (NS1); at late times postinfection, cells infected with NS1‐mutant viruses formed SGs in a double‐stranded RNA‐activated protein kinase (PKR)‐dependent fashion. In these cells, SG formation correlated with inhibited viral protein synthesis. Together, these experiments demonstrate the antiviral potential of SGs and reveal a viral countermeasure that limits SG formation.—Khaperskyy, D. A., Hatchette, T. F., McCormick, C. Influenza A virus inhibits cytoplasmic stress granule formation. FASEB J. 26, 1629‐1639 (2012). www.fasebj.org


Journal of Virology | 2011

Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions To Inhibit Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread

Liang Tzung Lin; Ting Ying Chen; Chueh Yao Chung; Ryan S. Noyce; T. Bruce Grindley; Craig McCormick; Ta Chen Lin; Guey Horng Wang; Chun Ching Lin; Christopher D. Richardson

ABSTRACT Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues.


Cell Host & Microbe | 2012

Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence.

Andrew M. Leidal; David P. Cyr; Richard Hill; Patrick W.K. Lee; Craig McCormick

Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposis sarcoma-associated herpesvirus (KSHV) proteins are known to subvert autophagic pathways, but the link to Kaposis sarcoma pathogenesis is unclear. We find that oncogenic assault caused by latent KSHV infection elicits DNA damage responses (DDRs) characteristic of OIS, yet infected cells display only modest levels of autophagy and fail to senesce. These aberrant responses result from the combined activities of tandemly expressed KSHV v-cyclin and v-FLIP proteins. v-Cyclin deregulates the cell cycle, triggers DDRs, and if left unchecked can promote autophagy and senescence. However, during latency v-FLIP blocks v-cyclin-induced autophagy and senescence in a manner that requires intact v-FLIP ATG3-binding domains. Together, these data reveal a coordinated viral gene expression program that usurps autophagy, blocks senescence, and facilitates the proliferation of KSHV-infected cells.


PLOS Pathogens | 2014

Influenza A Virus Host Shutoff Disables Antiviral Stress-Induced Translation Arrest

Denys A. Khaperskyy; Mohamed M. Emara; Benjamin P. Johnston; Paul Anderson; Todd F. Hatchette; Craig McCormick

Influenza A virus (IAV) polymerase complexes function in the nucleus of infected cells, generating mRNAs that bear 5′ caps and poly(A) tails, and which are exported to the cytoplasm and translated by host machinery. Host antiviral defences include mechanisms that detect the stress of virus infection and arrest cap-dependent mRNA translation, which normally results in the formation of cytoplasmic aggregates of translationally stalled mRNA-protein complexes known as stress granules (SGs). It remains unclear how IAV ensures preferential translation of viral gene products while evading stress-induced translation arrest. Here, we demonstrate that at early stages of infection both viral and host mRNAs are sensitive to drug-induced translation arrest and SG formation. By contrast, at later stages of infection, IAV becomes partially resistant to stress-induced translation arrest, thereby maintaining ongoing translation of viral gene products. To this end, the virus deploys multiple proteins that block stress-induced SG formation: 1) non-structural protein 1 (NS1) inactivates the antiviral double-stranded RNA (dsRNA)-activated kinase PKR, thereby preventing eIF2α phosphorylation and SG formation; 2) nucleoprotein (NP) inhibits SG formation without affecting eIF2α phosphorylation; 3) host-shutoff protein polymerase-acidic protein-X (PA-X) strongly inhibits SG formation concomitant with dramatic depletion of cytoplasmic poly(A) RNA and nuclear accumulation of poly(A)-binding protein. Recombinant viruses with disrupted PA-X host shutoff function fail to effectively inhibit stress-induced SG formation. The existence of three distinct mechanisms of IAV-mediated SG blockade reveals the magnitude of the threat of stress-induced translation arrest during viral replication.


PLOS ONE | 2013

Autophagy Enhances Bacterial Clearance during P. aeruginosa Lung Infection

Robert D. Junkins; Ann Shen; Kirill V. Rosen; Craig McCormick; Tong-Jun Lin

Pseudomonas aeruginosa is an opportunistic bacterial pathogen which is the leading cause of morbidity and mortality among cystic fibrosis patients. Although P. aeruginosa is primarily considered an extacellular pathogen, recent reports have demonstrated that throughout the course of infection the bacterium acquires the ability to enter and reside within host cells. Normally intracellular pathogens are cleared through a process called autophagy which sequesters and degrades portions of the cytosol, including invading bacteria. However the role of autophagy in host defense against P. aeruginosa in vivo remains unknown. Understanding the role of autophagy during P. aeruginosa infection is of particular importance as mutations leading to cystic fibrosis have recently been shown to cause a blockade in the autophagy pathway, which could increase susceptibility to infection. Here we demonstrate that P. aeruginosa induces autophagy in mast cells, which have been recognized as sentinels in the host defense against bacterial infection. We further demonstrate that inhibition of autophagy through pharmacological means or protein knockdown inhibits clearance of intracellular P. aeruginosa in vitro, while pharmacologic induction of autophagy significantly increased bacterial clearance. Finally we find that pharmacological manipulation of autophagy in vivo effectively regulates bacterial clearance of P. aeruginosa from the lung. Together our results demonstrate that autophagy is required for an effective immune response against P. aeruginosa infection in vivo, and suggest that pharmacological interventions targeting the autophagy pathway could have considerable therapeutic potential in the treatment of P. aeruginosa lung infection.


Molecular and Cellular Biology | 2014

Structure of an SspH1-PKN1 Complex Reveals the Basis for Host Substrate Recognition and Mechanism of Activation for a Bacterial E3 Ubiquitin Ligase

Alexander F. A. Keszei; Xiaojing Tang; Craig McCormick; Elton Zeqiraj; John R. Rohde; Mike Tyers; Frank Sicheri

ABSTRACT IpaH proteins are bacterium-specific E3 enzymes that function as type three secretion system (T3SS) effectors in Salmonella, Shigella, and other Gram-negative bacteria. IpaH enzymes recruit host substrates for ubiquitination via a leucine-rich repeat (LRR) domain, which can inhibit the catalytic domain in the absence of substrate. The basis for substrate recognition and the alleviation of autoinhibition upon substrate binding is unknown. Here, we report the X-ray structure of Salmonella SspH1 in complex with human PKN1. The LRR domain of SspH1 interacts specifically with the HR1b coiled-coil subdomain of PKN1 in a manner that sterically displaces the catalytic domain from the LRR domain, thereby activating catalytic function. SspH1 catalyzes the ubiquitination and proteasome-dependent degradation of PKN1 in cells, which attenuates androgen receptor responsiveness but not NF-κB activity. These regulatory features are conserved in other IpaH-substrate interactions. Our results explain the mechanism whereby substrate recognition and enzyme autoregulation are coupled in this class of bacterial ubiquitin ligases.


Journal of Virology | 2006

Phosphorylation and Function of the Kaposin B Direct Repeats of Kaposi's Sarcoma-Associated Herpesvirus

Craig McCormick; Don Ganem

ABSTRACT Kaposis sarcoma-associated herpesvirus encodes a protein, kaposin B, which is composed of multiple copies of 23-amino-acid direct repeats, termed DR2 and DR1. Kaposin B enhances the release of pathogenetically important proinflammatory cytokines by activating the p38 mitogen-activated protein kinase (MAPK)-MK2 kinase pathway and blocking cytokine mRNA decay. Here, we show that this mRNA stabilization function requires both the DR2 and DR1 elements of kaposin B; a monomeric form of the protein consisting of one copy of each repeat retains function. Furthermore, we show that p38 MAPK is capable of directly phosphorylating kaposin B in vitro and map the site of phosphorylation to a specific serine residue in DR1. Mutational ablation of this serine abolishes phosphorylation of the protein by p38 MAPK but does not affect kaposin Bs ability to extend mRNA half-life.


Autophagy | 2014

The emerging potential of autophagy-based therapies in the treatment of cystic fibrosis lung infections

Robert D. Junkins; Craig McCormick; Tong-Jun Lin

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), a channel that normally transports anions across epithelial cell membranes. The most common manifestation of CF is buildup of mucus in the airways and bacterial colonization of the lower respiratory tract, accompanied by chronic inflammation. Antibiotics are used to control CF-associated opportunistic infections, but lengthy antibiotic treatment risks the emergence of multiple-drug resistant (MDR) strains. New antimicrobial strategies are needed to prevent and treat infections in these high-risk individuals. Autophagy contributes to the control of a variety of microbial infections. For this reason, the recent discovery of functional impairment of autophagy in CF provides a new basis for understanding susceptibility to severe infections. Here, we review the role of autophagy in host defense against CF-associated bacterial and fungal pathogens, and survey pharmacologic approaches to restore normal autophagy function in these individuals. Autophagy restoration therapy may improve pathogen clearance and mitigate lung inflammation in CF airways.


PLOS Pathogens | 2016

Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein.

Denys A. Khaperskyy; Summer Schmaling; Jonah Larkins-Ford; Craig McCormick; Marta M. Gaglia

Influenza A viruses (IAVs) inhibit host gene expression by a process known as host shutoff. Host shutoff limits host innate immune responses and may also redirect the translation apparatus to the production of viral proteins. Multiple IAV proteins regulate host shutoff, including PA-X, a ribonuclease that remains incompletely characterized. We report that PA-X selectively targets host RNA polymerase II (Pol II) transcribed mRNAs, while sparing products of Pol I and Pol III. Interestingly, we show that PA-X can also target Pol II-transcribed RNAs in the nucleus, including non-coding RNAs that are not destined to be translated, and reporter transcripts with RNA hairpin structures that block ribosome loading. Transcript degradation likely occurs in the nucleus, as PA-X is enriched in the nucleus and its nuclear localization correlates with reduction in target RNA levels. Complete degradation of host mRNAs following PA-X-mediated endonucleolytic cleavage is dependent on the host 5’->3’-exonuclease Xrn1. IAV mRNAs are structurally similar to host mRNAs, but are synthesized and modified at the 3’ end by the action of the viral RNA-dependent RNA polymerase complex. Infection of cells with wild-type IAV or a recombinant PA-X-deficient virus revealed that IAV mRNAs resist PA-X-mediated degradation during infection. At the same time, loss of PA-X resulted in changes in the synthesis of select viral mRNAs and a decrease in viral protein accumulation. Collectively, these results significantly advance our understanding of IAV host shutoff, and suggest that the PA-X causes selective degradation of host mRNAs by discriminating some aspect of Pol II-dependent RNA biogenesis in the nucleus.


Journal of Virology | 2015

Timing Is Everything: Coordinated Control of Host Shutoff by Influenza A Virus NS1 and PA-X Proteins

Denys A. Khaperskyy; Craig McCormick

ABSTRACT Like all viruses, influenza viruses (IAVs) use host translation machinery to decode viral mRNAs. IAVs ensure efficient translation of viral mRNAs through host shutoff, a process whereby viral proteins limit the accumulation of host proteins through subversion of their biogenesis. Despite its small genome, the virus deploys multiple host shutoff mechanisms at different stages of infection, thereby ensuring successful replication while limiting the communication of host antiviral responses. In this Gem, we review recent data on IAV host shutoff proteins, frame the outstanding questions in the field, and propose a temporally coordinated model of IAV host shutoff.

Collaboration


Dive into the Craig McCormick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge