Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig P. Hersh is active.

Publication


Featured researches published by Craig P. Hersh.


PLOS Genetics | 2009

A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci.

Sreekumar G. Pillai; Dongliang Ge; Guohua Zhu; Xiangyang Kong; Anna C. Need; Sheng Feng; Craig P. Hersh; Per Bakke; Amund Gulsvik; Andreas Ruppert; Karin C. Lødrup Carlsen; Allen D. Roses; Wayne Anderson; Stephen I. Rennard; David A. Lomas; Edwin K. Silverman; David B. Goldstein

There is considerable variability in the susceptibility of smokers to develop chronic obstructive pulmonary disease (COPD). The only known genetic risk factor is severe deficiency of α1-antitrypsin, which is present in 1–2% of individuals with COPD. We conducted a genome-wide association study (GWAS) in a homogenous case-control cohort from Bergen, Norway (823 COPD cases and 810 smoking controls) and evaluated the top 100 single nucleotide polymorphisms (SNPs) in the family-based International COPD Genetics Network (ICGN; 1891 Caucasian individuals from 606 pedigrees) study. The polymorphisms that showed replication were further evaluated in 389 subjects from the US National Emphysema Treatment Trial (NETT) and 472 controls from the Normative Aging Study (NAS) and then in a fourth cohort of 949 individuals from 127 extended pedigrees from the Boston Early-Onset COPD population. Logistic regression models with adjustments of covariates were used to analyze the case-control populations. Family-based association analyses were conducted for a diagnosis of COPD and lung function in the family populations. Two SNPs at the α-nicotinic acetylcholine receptor (CHRNA 3/5) locus were identified in the genome-wide association study. They showed unambiguous replication in the ICGN family-based analysis and in the NETT case-control analysis with combined p-values of 1.48×10−10, (rs8034191) and 5.74×10−10 (rs1051730). Furthermore, these SNPs were significantly associated with lung function in both the ICGN and Boston Early-Onset COPD populations. The C allele of the rs8034191 SNP was estimated to have a population attributable risk for COPD of 12.2%. The association of hedgehog interacting protein (HHIP) locus on chromosome 4 was also consistently replicated, but did not reach genome-wide significance levels. Genome-wide significant association of the HHIP locus with lung function was identified in the Framingham Heart study (Wilk et al., companion article in this issue of PLoS Genetics; doi:10.1371/journal.pgen.1000429). The CHRNA 3/5 and the HHIP loci make a significant contribution to the risk of COPD. CHRNA3/5 is the same locus that has been implicated in the risk of lung cancer.


Nature Genetics | 2010

Variants in FAM13A are associated with chronic obstructive pulmonary disease

Michael H. Cho; Nadia Boutaoui; Barbara J. Klanderman; Jody S. Sylvia; John Ziniti; Craig P. Hersh; Dawn L. DeMeo; Gary M. Hunninghake; Augusto L. Litonjua; David Sparrow; Christoph Lange; Sungho Won; James Murphy; Terri H. Beaty; Elizabeth A. Regan; Barry J. Make; John E. Hokanson; James D. Crapo; Xiangyang Q. Kong; Wayne H. Anderson; Ruth Tal-Singer; David Lomas; Per Bakke; Amund Gulsvik; Sreekumar G. Pillai; Edwin K. Silverman

We performed a genome-wide association study for chronic obstructive pulmonary disease (COPD) in three population cohorts, including 2,940 cases and 1,380 controls who were current or former smokers with normal lung function. We identified a new susceptibility locus at 4q22.1 in FAM13A and replicated this association in one case-control group (n = 1,006) and two family-based cohorts (n = 3,808) (rs7671167, combined P = 1.2 × 10−11, combined odds ratio in case-control studies 0.76, 95% confidence interval 0.69–0.83).


The New England Journal of Medicine | 2009

MMP12, lung function, and COPD in high-risk populations.

Gary M. Hunninghake; Michael H. Cho; Yohannes Tesfaigzi; Manuel Soto-Quiros; Lydiana Avila; Jessica Lasky-Su; Chris Stidley; Erik Melén; Cilla Söderhäll; Jenny Hallberg; Inger Kull; Juha Kere; Magnus Svartengren; Göran Pershagen; Magnus Wickman; Christoph Lange; Dawn L. DeMeo; Craig P. Hersh; Barbara J. Klanderman; Benjamin A. Raby; David Sparrow; Steven D. Shapiro; Edwin K. Silverman; Augusto A. Litonjua; Scott T. Weiss; Juan C. Celedón

BACKGROUND Genetic variants influencing lung function in children and adults may ultimately lead to the development of chronic obstructive pulmonary disease (COPD), particularly in high-risk groups. METHODS We tested for an association between single-nucleotide polymorphisms (SNPs) in the gene encoding matrix metalloproteinase 12 (MMP12) and a measure of lung function (prebronchodilator forced expiratory volume in 1 second [FEV(1)]) in more than 8300 subjects in seven cohorts that included children and adults. Within the Normative Aging Study (NAS), a cohort of initially healthy adult men, we tested for an association between SNPs that were associated with FEV(1) and the time to the onset of COPD. We then examined the relationship between MMP12 SNPs and COPD in two cohorts of adults with COPD or at risk for COPD. RESULTS The minor allele (G) of a functional variant in the promoter region of MMP12 (rs2276109 [-82A-->G]) was positively associated with FEV(1) in a combined analysis of children with asthma and adult former and current smokers in all cohorts (P=2x10(-6)). This allele was also associated with a reduced risk of the onset of COPD in the NAS cohort (hazard ratio, 0.65; 95% confidence interval [CI], 0.46 to 0.92; P=0.02) and with a reduced risk of COPD in a cohort of smokers (odds ratio, 0.63; 95% CI, 0.45 to 0.88; P=0.005) and among participants in a family-based study of early-onset COPD (P=0.006). CONCLUSIONS The minor allele of a SNP in MMP12 (rs2276109) is associated with a positive effect on lung function in children with asthma and in adults who smoke. This allele is also associated with a reduced risk of COPD in adult smokers.


Respiratory Research | 2011

The clinical features of the overlap between COPD and asthma

Megan Hardin; Edwin K. Silverman; R. Graham Barr; Nadia N. Hansel; Joyce Schroeder; Barry J. Make; James D. Crapo; Craig P. Hersh

BackgroundThe coexistence of COPD and asthma is widely recognized but has not been well described. This study characterizes clinical features, spirometry, and chest CT scans of smoking subjects with both COPD and asthma.MethodsWe performed a cross-sectional study comparing subjects with COPD and asthma to subjects with COPD alone in the COPDGene Study.Results119 (13%) of 915 subjects with COPD reported a history of physician-diagnosed asthma. These subjects were younger (61.3 vs 64.7 years old, p = 0.0001) with lower lifetime smoking intensity (43.7 vs 55.1 pack years, p = 0.0001). More African-Americans reported a history of asthma (33.6% vs 15.6%, p < 0.0001). Subjects with COPD and asthma demonstrated worse disease-related quality of life, were more likely to have had a severe COPD exacerbation in the past year, and were more likely to experience frequent exacerbations (OR 3.55 [2.19, 5.75], p < 0.0001). Subjects with COPD and asthma demonstrated greater gas-trapping on chest CT. There were no differences in spirometry or CT measurements of emphysema or airway wall thickness.ConclusionSubjects with COPD and asthma represent a relevant clinical population, with worse health-related quality of life. They experience more frequent and severe respiratory exacerbations despite younger age and reduced lifetime smoking history.Trial registrationClinicalTrials.gov: NCT00608764


Chest | 2011

The Chronic Bronchitic Phenotype of COPD: An Analysis of the COPDGene Study

Victor Kim; MeiLan K. Han; Gwendolyn B. Vance; Barry J. Make; John E. Hokanson; Craig P. Hersh; Douglas Stinson; Edwin K. Silverman; Gerard J. Criner

BACKGROUND Chronic bronchitis (CB) in patients with COPD is associated with an accelerated lung function decline and an increased risk of respiratory infections. Despite its clinical significance, the chronic bronchitic phenotype in COPD remains poorly defined. METHODS We analyzed data from subjects enrolled in the Genetic Epidemiology of COPD (COPDGene) Study. A total of 1,061 subjects with GOLD (Global Initiative for Chronic Obstructive Lung Disease) stage II to IV were divided into two groups: CB (CB+) if subjects noted chronic cough and phlegm production for ≥ 3 mo/y for 2 consecutive years, and no CB (CB-) if they did not. RESULTS There were 290 and 771 subjects in the CB+ and CB- groups, respectively. Despite similar lung function, the CB+ group was younger (62.8 ± 8.4 vs 64.6 ± 8.4 years, P = .002), smoked more (57 ± 30 vs 52 ± 25 pack-years, P = .006), and had more current smokers (48% vs 27%, P < .0001). A greater percentage of the CB+ group reported nasal and ocular symptoms, wheezing, and nocturnal awakenings secondary to cough and dyspnea. History of exacerbations was higher in the CB+ group (1.21 ± 1.62 vs 0.63 ± 1.12 per patient, P < .027), and more patients in the CB+ group reported a history of severe exacerbations (26.6% vs 20.0%, P = .024). There was no difference in percent emphysema or percent gas trapping, but the CB+ group had a higher mean percent segmental airway wall area (63.2% ± 2.9% vs 62.6% ± 3.1%, P = .013). CONCLUSIONS CB in patients with COPD is associated with worse respiratory symptoms and higher risk of exacerbations. This group may need more directed therapy targeting chronic mucus production and smoking cessation not only to improve symptoms but also to reduce risk, improve quality of life, and improve outcomes. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT00608764; URL: www.clinicaltrials.gov.


Human Molecular Genetics | 2012

A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13

Michael H. Cho; Peter J. Castaldi; Emily S. Wan; Mateusz Siedlinski; Craig P. Hersh; Dawn L. DeMeo; Blanca E. Himes; Jody S. Sylvia; Barbara J. Klanderman; John Ziniti; Christoph Lange; Augusto A. Litonjua; David Sparrow; Elizabeth A. Regan; Barry J. Make; John E. Hokanson; Tanda Murray; Jacqueline B. Hetmanski; Sreekumar G. Pillai; Xiangyang Kong; Wayne Anderson; Ruth Tal-Singer; David A. Lomas; Harvey O. Coxson; Lisa Edwards; William MacNee; Jørgen Vestbo; Julie Yates; Alvar Agusti; Peter Calverley

The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.


Thorax | 2004

Chronic obstructive pulmonary disease in α1-antitrypsin PI MZ heterozygotes: a meta-analysis

Craig P. Hersh; Morten Dahl; N P Ly; C S Berkey; Børge G. Nordestgaard; Edwin K. Silverman

Background: Severe α1-antitrypsin deficiency, usually related to homozygosity for the protease inhibitor (PI) Z allele, is a proven genetic risk factor for chronic obstructive pulmonary disease (COPD). The risk of COPD in PI MZ heterozygous individuals is controversial. Methods: A search of MEDLINE from January 1966 to May 2003 identified studies that examined the risk of COPD in PI MZ individuals and studies that measured forced expiratory volume in 1 second (FEV1) in heterozygotes. Results: In 16 studies that reported COPD as a categorical outcome, the combined odds ratio (OR) for PI MZ versus PI MM (normal genotype) was 2.31 (95% CI 1.60 to 3.35). The summary OR was higher in case-control studies (OR 2.97; 95% CI 2.08 to 4.26) than in cross sectional studies (OR 1.50; 95% CI 0.97 to 2.31) and was attenuated in studies that adjusted for cigarette smoking (OR 1.61; 95% CI 0.92 to 2.81). In seven studies that reported FEV1 as a continuous outcome there was no difference in mean FEV1 between PI MM and PI MZ individuals. Conclusions: Case-control studies showed increased odds of COPD in PI MZ individuals, but this finding was not confirmed in cross sectional studies. Variability in study design and quality limits the interpretation. These results are consistent with a small increase in risk of COPD in all PI MZ individuals or a larger risk in a subset. Future studies that adjust for smoking and include other COPD related phenotypes are required to conclusively determine the risk of COPD in PI MZ heterozygotes.


The Lancet Respiratory Medicine | 2014

Risk loci for chronic obstructive pulmonary disease: a genome-wide association study and meta-analysis

Michael H. Cho; Merry-Lynn N. McDonald; Xiaobo Zhou; Manuel Mattheisen; Peter J. Castaldi; Craig P. Hersh; Dawn L. DeMeo; Jody S. Sylvia; John Ziniti; Nan M. Laird; Christoph Lange; Augusto A. Litonjua; David Sparrow; Richard Casaburi; R. Graham Barr; Elizabeth A. Regan; Barry J. Make; John E. Hokanson; Sharon M. Lutz; Tanda Murray Dudenkov; Homayoon Farzadegan; Jacqueline B. Hetmanski; Ruth Tal-Singer; David A. Lomas; Per Bakke; Amund Gulsvik; James D. Crapo; Edwin K. Silverman; Terri H. Beaty

BACKGROUND The genetic risk factors for susceptibility to chronic obstructive pulmonary disease (COPD) are still largely unknown. Additional genetic variants are likely to be identified by genome-wide association studies in larger cohorts or specific subgroups. We sought to identify risk loci for moderate to severe and severe COPD with data from several cohort studies. METHODS We combined genome-wide association analysis data from participants in the COPDGene study (non-Hispanic white and African-American ethnic origin) and the ECLIPSE, NETT/NAS, and Norway GenKOLS studies (self-described white ethnic origin). We did analyses comparing control individuals with individuals with moderate to severe COPD and with a subset of individuals with severe COPD. Single nucleotide polymorphisms yielding a p value of less than 5 × 10(-7) in the meta-analysis at loci not previously described were genotyped in individuals from the family-based ICGN study. We combined results in a joint meta-analysis (threshold for significance p<5 × 10(-8)). FINDINGS Analysis of 6633 individuals with moderate to severe COPD and 5704 control individuals confirmed association at three known loci: CHRNA3 (p=6·38 × 10(-14)), FAM13A (p=1·12 × 10(-14)), and HHIP (p=1·57 × 10(-12)). We also showed significant evidence of association at a novel locus near RIN3 (p=5·25 × 10(-9)). In the overall meta-analysis (ie, including data from 2859 ICGN participants), the association with RIN3 remained significant (p=5·4 × 10(-9)). 3497 individuals were included in our analysis of severe COPD. The effect estimates for the loci near HHIP and CHRNA3 were significantly stronger in severe disease than in moderate to severe disease (p<0·01). We also identified associations at two additional loci: MMP12 (overall joint meta-analysis p=2·6 × 10(-9)) and TGFB2 (overall joint meta-analysis p=8·3 × 10(-9)). INTERPRETATION We have confirmed associations with COPD at three known loci and identified three new genome-wide significant associations. Genetic variants other than in α-1 antitrypsin increase the risk of COPD. FUNDING US National Heart, Lung, and Blood Institute; the Alpha-1 Foundation; the COPD Foundation through contributions from AstraZeneca, Boehringer Ingelheim, Novartis, and Sepracor; GlaxoSmithKline; Centers for Medicare and Medicaid Services; Agency for Healthcare Research and Quality; and US Department of Veterans Affairs.


European Respiratory Journal | 2014

The clinical and genetic features of COPD-asthma overlap syndrome

Megan Hardin; Michael Cho; Merry Lynn N McDonald; Terri H. Beaty; Joe W. Ramsdell; Surya P. Bhatt; Edwin J. R. van Beek; Barry J. Make; James D. Crapo; Edwin K. Silverman; Craig P. Hersh

Individuals with chronic obstructive pulmonary disease (COPD) and asthma are an important but poorly characterised group. The genetic determinants of COPD and asthma overlap have not been studied. The aim of this study was to identify clinical features and genetic risk factors for COPD and asthma overlap. Subjects were current or former smoking non-Hispanic whites or African–Americans with COPD. Overlap subjects reported a history of physician-diagnosed asthma before the age of 40 years. We compared clinical and radiographic features between COPD and overlap subjects. We performed genome-wide association studies (GWAS) in the non-Hispanic whites and African–American populations, and combined these results in a meta-analysis. More females and African–Americans reported a history of asthma. Overlap subjects had more severe and more frequent respiratory exacerbations, less emphysema and greater airway wall thickness compared to subjects with COPD alone. The non-Hispanic white GWAS identified single nucleotide polymorphisms in the genes CSMD1 (rs11779254, p=1.57×10−6) and SOX5 (rs59569785, p=1.61×10−6) and the meta-analysis identified single nucleotide polymorphisms in the gene GPR65 (rs6574978, p=1.18×10−7) associated with COPD and asthma overlap. Overlap subjects have more exacerbations, less emphysema and more airway disease for any degree of lung function impairment compared to COPD alone. We identified novel genetic variants associated with this syndrome. COPD and asthma overlap is an important syndrome and may require distinct clinical management. We identified distinct clinical features and possible genetic risk factors for subjects with both COPD and asthma http://ow.ly/uWWBc


Human Molecular Genetics | 2010

The COPD genetic association compendium: a comprehensive online database of COPD genetic associations

Peter J. Castaldi; Michael H. Cho; Matthew Cohn; Fawn Langerman; Sienna Moran; Nestor Tarragona; Hala Moukhachen; Radhika Venugopal; Delvina Hasimja; Esther Kao; Byron C. Wallace; Craig P. Hersh; Sachin Bagade; Lars Bertram; Edwin K. Silverman; Thomas A Trikalinos

Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. COPD is thought to arise from the interaction of environmental exposures and genetic susceptibility, and major research efforts are underway to identify genetic determinants of COPD susceptibility. With the exception of SERPINA1, genetic associations with COPD identified by candidate gene studies have been inconsistently replicated, and this literature is difficult to interpret. We conducted a systematic review and meta-analysis of all population-based, case-control candidate gene COPD studies indexed in PubMed before 16 July 2008. We stored our findings in an online database, which serves as an up-to-date compendium of COPD genetic associations and cumulative meta-analysis estimates. On the basis of our systematic review, the vast majority of COPD candidate gene era studies are underpowered to detect genetic effect odds ratios of 1.2-1.5. We identified 27 genetic variants with adequate data for quantitative meta-analysis. Of these variants, four were significantly associated with COPD susceptibility in random effects meta-analysis, the GSTM1 null variant (OR 1.45, CI 1.09-1.92), rs1800470 in TGFB1 (0.73, CI 0.64-0.83), rs1800629 in TNF (OR 1.19, CI 1.01-1.40) and rs1799896 in SOD3 (OR 1.97, CI 1.24-3.13). In summary, most COPD candidate gene era studies are underpowered to detect moderate-sized genetic effects. Quantitative meta-analysis identified four variants in GSTM1, TGFB1, TNF and SOD3 that show statistically significant evidence of association with COPD susceptibility.

Collaboration


Dive into the Craig P. Hersh's collaboration.

Top Co-Authors

Avatar

Edwin K. Silverman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael H. Cho

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dawn L. DeMeo

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Castaldi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

David A. Lomas

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

George R. Washko

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Terri H. Beaty

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge