Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig Syms is active.

Publication


Featured researches published by Craig Syms.


Ecology | 2000

DISTURBANCE, HABITAT STRUCTURE, AND THE DYNAMICS OF A CORAL-REEF FISH COMMUNITY

Craig Syms; Geoffrey P. Jones

Coral reef fishes occupy habitats that are patchy and subject to frequent natural disturbances. Although different types of disturbance are likely to generate different community responses, the relationship between different disturbance agents and their effects on reef fish communities has not been examined experimentally. We studied a set of natural patch reefs, dominated by a diverse array of soft and hard coral cover, at Lizard Island on the Great Barrier Reef (northeastern Australia). The fish assemblages on the reefs were sampled over 4 mo to establish baseline values and then experimentally disturbed. Two types of disturbance were carried out in a factorial combination: pulsed mortality by removing all fish from reefs and pulsed habitat disturbance. Habitat disturbance was applied at two levels: Level 1 consisted only of damaging all live hard corals with a hammer; Level 2 consisted of damaging all live hard corals, and in addition, using a hammer to reduce the height and complexity of the reef matrix. We then monitored the experiment for a further 19 mo, including two recruitment seasons. Unmanipulated control assemblages persisted through time, and despite large changes in total abundance, species composition remained consistent relative to disturbed treatments. Assemblages disturbed by fish removal were resilient, with recolonization from both immigration and larval settlement effectively removing differences between removal treatments and controls 3 mo after manipulation. Habitat disturbance alone generated differences between experimental and control assemblages, which persisted for the duration of the experiment. The more extreme level of habitat disturbance generated more extreme changes in fish assemblages when no pulsed mortality occurred. Habitat disturbance in combination with pulsed mortality generated similar community responses as the habitat disturbance treatment alone. However, fish removal had the effect of eliminating the difference between fish assemblages on reefs subjected to different levels of habitat disturbance. Community response to habitat disturbance was driven by species-specific patterns of reduced abundance of species associated with live coral in combination with increased numbers of those associated with rubble. Declines in the abundance of coral associates on damaged reefs were abrupt, with no recovery observed for the duration of the experiment. In contrast, increases in the abundance of rubble associates were more ephemeral, in that initial high levels of recruitment and immigration were followed by a high rate of loss. Habitat disturbance also generated reefs that typically supported lower fish abundance, fewer species, and increased evenness relative to controls. Our results support a model of patch-reef fish assemblages organized by a combination of deterministic factors (such as habitat structure) and stochastic processes (such as recruitment). These disparate mechanisms operate in concert to generate reasonably consistent patterns of community structure. Habitat structure appears to mediate much of the apparent determinism and is likely to operate both as a reflection of species-specific habitat preferences and by modifying interactions among fish species. Consequently, disturbance plays a substantial role in structuring communities of coral-reef fishes by modifying both spatial and temporal heterogeneity.


Proceedings of the Royal Society of London B: Biological Sciences | 2008

Coral reef fish smell leaves to find island homes

Danielle L. Dixson; Geoflfrey P. Jones; Philip L. Munday; Serge Planes; Morgan S. Pratchett; Maya Srinivasan; Craig Syms; Simon R. Thorrold

Recent studies have shown that some coral reef fish larvae return to natal reefs, while others disperse to distant reefs. However, the sensory mechanisms used to find settlement sites are poorly understood. One hypothesis is that larvae use olfactory cues to navigate home or find other suitable reef habitats. Here we show a strong association between the clownfish Amphiprion percula and coral reefs surrounding offshore islands in Papua New Guinea. Host anemones and A. percula are particularly abundant in shallow water beneath overhanging rainforest vegetation. A series of experiments were carried out using paired-choice flumes to evaluate the potential role of water-borne olfactory cues in finding islands. Recently settled A. percula exhibited strong preferences for: (i) water from reefs with islands over water from reefs without islands; (ii) water collected near islands over water collected offshore; and (iii) water treated with either anemones or leaves from rainforest vegetation. Laboratory reared-juveniles exhibited the same positive response to anemones and rainforest vegetation, suggesting that olfactory preferences are innate rather than learned. We hypothesize that A. percula use a suite of olfactory stimuli to locate vegetated islands, which may explain the high levels of self-recruitment on island reefs. This previously unrecognized link between coral reefs and island vegetation argues for the integrated management of these pristine tropical habitats.


Marine Environmental Research | 2009

Selective coral mortality associated with outbreaks of Acanthaster planci L. in Bootless Bay, Papua New Guinea

Morgan S. Pratchett; T.J. Schenk; M. Baine; Craig Syms; Andrew Baird

Population outbreaks of crown-of-thorns sea star (Acanthaster planci L.) remain one of the most significant biological disturbances on tropical coral reefs although the increasing attention given to other threats has greatly limited recent progress in understanding the cause and consequences of this phenomenon. In September 2005 dramatic increases in the abundance of A. planci were observed on reefs within Bootless Bay, Central Province, Papua New Guinea, where few crown-of-thorns have previously been reported. Densities of A. planci peaked at 162 sea stars per hectare and caused extensive coral mortality. This outbreak killed upwards of 55% of live corals, reducing overall coral cover from 42.4% in 2005 down to just 19.1% in March 2006. Declines in coral cover were largely driven by widespread mortality of Acropora spp. which dominated reef assemblages prior to the outbreak. The extensive depletion of Acropora spp. greatly altered the coral composition as well as the physical structure of reef habitats. In the absence of any other major disturbances these coral communities are likely to quickly recover, but this outbreak highlights the ongoing contribution of A. planci to degradation of coral reef environments.


The Journal of Experimental Biology | 2010

Crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes

Shaun K. Wilson; Mehdi Adjeroud; David R. Bellwood; Michael L. Berumen; David J. Booth; Y. Marie Bozec; Pascale Chabanet; Alistair J. Cheal; Joshua E. Cinner; Martial Depczynski; David A. Feary; Monica Gagliano; Nicholas A. J. Graham; A. R. Halford; Benjamin S. Halpern; Alastair R. Harborne; Andrew S. Hoey; Sally J. Holbrook; Geoffrey P. Jones; M. Kulbiki; Yves Letourneur; T. L. de Loma; Tim R. McClanahan; Mark I. McCormick; Mark G. Meekan; Peter J. Mumby; Philip L. Munday; Marcus C. Öhman; Morgan S. Pratchett; Bernhard Riegl

SUMMARY Expert opinion was canvassed to identify crucial knowledge gaps in current understanding of climate change impacts on coral reef fishes. Scientists that had published three or more papers on the effects of climate and environmental factors on reef fishes were invited to submit five questions that, if addressed, would improve our understanding of climate change effects on coral reef fishes. Thirty-three scientists provided 155 questions, and 32 scientists scored these questions in terms of: (i) identifying a knowledge gap, (ii) achievability, (iii) applicability to a broad spectrum of species and reef habitats, and (iv) priority. Forty-two per cent of the questions related to habitat associations and community dynamics of fish, reflecting the established effects and immediate concern relating to climate-induced coral loss and habitat degradation. However, there were also questions on fish demographics, physiology, behaviour and management, all of which could be potentially affected by climate change. Irrespective of their individual expertise and background, scientists scored questions from different topics similarly, suggesting limited bias and recognition of a need for greater interdisciplinary and collaborative research. Presented here are the 53 highest-scoring unique questions. These questions should act as a guide for future research, providing a basis for better assessment and management of climate change impacts on coral reefs and associated fish communities.


Journal of Experimental Marine Biology and Ecology | 1998

Disturbance and the structure of coral reef fish communities on the reef slope

Craig Syms

Abstract Three levels of physical disturbance were applied to corals in permanent 10x10 m quadrats along a section of fringing reef at Lizard Island on the Great Barrier Reef to investigate the response of fish assemblages. Tabular and corymbose corals were overturned and left in situ, reducing total hard coral cover from ~55% to ~47%, ~43%, and ~34%. Despite pre-existing associations with benthic cover, all fish groups examined (pomacentrids, labrids, chaetodontids, and acanthurids) were resistent to benthic disturbances at the level and scale at which they were applied. Partial Mantels tests, in combination with partial Canonical Correspondence Analysis enabled spatial and temporal variation to be factored out from experimental effects. Most of the variation in the fish community could be assigned to spatio-temporal variables, indicating that spatial structure over the reef landscape may moderate localised disturbance effects. This study indicates that coral reef fish assemblages may be more resistant to disturbance than many correlative studies would suggest, and highlights a need for further information on levels and scales of natural habitat disturbance in order to apply a structured approach to the experimental investigation of the importance of habitat in structuring coral-reef fish assemblages.


Oecologia | 2007

Predators target rare prey in coral reef fish assemblages

Glenn R. Almany; Lisa F. Peacock; Craig Syms; Mark I. McCormick; Geoffrey P. Jones

Predation can result in differing patterns of local prey diversity depending on whether predators are selective and, if so, how they select prey. A recent study comparing the diversity of juvenile fish assemblages among coral reefs with and without predators concluded that decreased prey diversity in the presence of predators was most likely caused by predators actively selecting rare prey species. We used several related laboratory experiments to explore this hypothesis by testing: (1) whether predators prefer particular prey species, (2) whether individual predators consistently select the same prey species, (3) whether predators target rare prey, and (4) whether rare prey are more vulnerable to predation because they differ in appearance/colouration from common prey. Rare prey suffered greater predation than expected and were not more vulnerable to predators because their appearance/colouration differed from common prey. Individual predators did not consistently select the same prey species through time, suggesting that prey selection behaviour was flexible and context dependent rather than fixed. Thus, selection of rare prey was unlikely to be explained by simple preferences for particular prey species. We hypothesize that when faced with multiple prey species predators may initially focus on rare, conspicuous species to overcome the sensory confusion experienced when attacking aggregated prey, thereby minimizing the time required to capture prey. This hypothesis represents a community-level manifestation of two well-documented and related phenomena, the “confusion effect” and the “oddity effect”, and may be an important, and often overlooked, mechanism by which predators influence local species diversity.


Biology Letters | 2006

Cooperative growth regulation in coral-dwelling fishes

Philip L. Munday; Adrian M Cardoni; Craig Syms

Dominant individuals often grow faster than subordinates because they gain a greater share of important resources. However, dominants should also strategically adjust their growth rates, relative to the size of subordinates, if this improves their reproductive success. Here, we show that individuals in breeding pairs of the coral-dwelling fish Gobiodon histrio regulate their growth to reduce the size difference between partners. In pairs where one individual was larger than the other, the smaller individual increased its growth rate and the larger individual decreased its growth rate, compared to individuals in size-matched pairs. The reproductive success of breeding pairs is limited by the size of the smallest individual in the pair. Therefore, it appears that the larger individual trades-off its own growth against that of the smaller individual, thereby improving the reproductive success of both individuals in the pair. This demonstrates a remarkable ability of individuals to strategically adjust their body size to suit the local social environment, and reveals a novel mechanism for size-assortative mating.


Reference Module in Earth Systems and Environmental Sciences#R##N#Encyclopedia of Ecology | 2008

Principal components analysis

Craig Syms

Principal components analysis (PCA) is a multivariate ordination technique used to display patterns in multivariate data. It aims to graphically display the relative positions of data points in fewer dimensions while retaining as much information as possible, and explore relationships between dependent variables. It is a hypothesis-generating technique that is intended to describe patterns in a data table, rather than test formal statistical hypotheses. PCA assumes linear responses of variables, and works best over short ecological gradients, with few zeroes in the data. It has a range of applications other than data display including multiple regression, and variable reduction.


Marine Biology Research | 2007

Cytotoxic and anti-microbial activity of the sponge Iotrochota sp. as a function of size and spatial competitors

Heidi M. Luter; Alan Duckworth; Craig Syms

Abstract Secondary metabolites from marine invertebrates, such as sponges, have diverse ecological roles and may be used in anti-predation, anti-fouling and spatial competition. The thin encrusting sponge Iotrochota sp., found on the Great Barrier Reef, Australia, contains several novel indoles that may aid in spatial competition. To examine whether levels of surrounding competition affect the toxicity of Iotrochota sp., 24 sponges from Salamander Reef, Central Great Barrier Reef, subject to either high or low levels of surrounding competition, were sampled. Tissue samples were taken from areas where the sponge was in direct competition with neighbouring sessile invertebrates, as well as from areas where competition was less obvious. Compounds from the tissue samples were extracted and tested in both cytotoxicity and anti-microbial assays. However, neither cytotoxicity nor anti-microbial activity varied significantly between the high and low competition treatments. Cytotoxicity was greatest among large sponges, suggesting that size is an important factor contributing to the toxicity of Iotrochota sp. sponges in this study.


Marine Ecology Progress Series | 1995

Multi-scale analysis of habitat association in a guild of blennioid fishes

Craig Syms

Collaboration


Dive into the Craig Syms's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carden C. Wallace

Museum of Tropical Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Muir

Museum of Tropical Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge