Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Craig V. Sullivan is active.

Publication


Featured researches published by Craig V. Sullivan.


Fish Physiology and Biochemistry | 2002

Ovarian follicle growth, maturation, and ovulation in teleost fish

Reynaldo Patiño; Craig V. Sullivan

Knowledge of ovarian follicle growth, maturation, and ovulation in teleosts is important to many aspects of basic and biomedical research, fisheries management, aquaculture, and environmental science. Follicle growth includes previtellogenic and vitellogenic stages. Although little progress has been made in our understanding of previtellogenic development, information on the regulation and mechanisms of vitellogenic growth has increased substantially in recent years. This new information pertains to the multiplicity of vitellogenin (Vg) genes, the oocyte Vg receptor, Vg processing enzymes (cathepsins) and their specific yolk products, and synthesis of various vitelline envelope precursor proteins in liver and ovary. Oocyte acquisition of lipids from sources other than Vg dominates follicle growth in many teleosts, especially perciformes, yet our understanding of the basic processes involved remains rudimentary. Considerable advances also have been made in our understanding of the endocrine regulation and mechanisms of ovarian follicle maturation. We have learned that ovarian follicle maturation involves a number of events including luteinizing hormone (LH)-dependent acquisition of oocyte maturational competence, LH induction of maturation-inducing hormone (MIH) synthesis, and MIH-dependent meiotic resumption (nuclear maturation) and cytoplasmic maturation. While much has been learned about mechanisms of maturational competence, MIH synthesis and meiotic resumption, our knowledge of cytoplasmic maturation is limited to descriptions of MIH-dependent yolk protein hydrolysis and associated oocyte hydration in a few species. It has become apparent that ovulation requires genomic activation regulated by nuclear MIH receptors, but the transduction pathways for the ovulatory MIH signal appear to be complex and are poorly understood.


Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology | 1999

Fathead minnow (Pimephales promelas) vitellogenin: purification, characterization and quantitative immunoassay for the detection of estrogenic compounds

Louise G. Parks; Ann Oliver Cheek; Nancy D. Denslow; Scott A. Heppell; John A. McLachlan; Gerald A. LeBlanc; Craig V. Sullivan

The egg yolk precursor protein, vitellogenin (VTG), was purified from blood plasma of 17beta-estradiol (E2)-treated male fathead minnows (Pimephales promnelas) by anion-exchange chromatography on DEAE-agarose. A rabbit antiserum was raised against their blood plasma and then adsorbed with plasma from untreated (control) males to render the antiserum specific to VTG. The adsorbed antiserum was used to detect fathead minnow VTG (fVTG) in Western and dot blotting experiments and in an enzyme-linked immunosorbent assay (ELISA). The antiserum recognised fVTG as a approximately 156 kDa protein in plasma from vitellogenic females and E2-injected males but not untreated males. Its identity was confirmed by analysis of: (1) amino acid composition; (2) an internal amino acid sequence; (3) reactivity to the homologous antiserum; and (4) recognition by monoclonal antibodies prepared against the VTG from common carp (Cyprinus carpio) and brown bullhead (Ameiurus nebulosus). Specificity of the homologous antiserum to fVTG was confirmed by Western blotting of serially diluted plasma from vitellogenic females. Utility of the antiserum and purified fVTG for detecting exposure of male fathead minnows to estrogenic compounds was verified using a dot blotting immunoassay of fVTG and detected by chemiluminescence. Adult male fish were exposed to various concentrations of E2 (10(-8), 10(-9) and 10(-10) M) in their rearing water and plasma assayed for the presence of VTG at different time points (2, 7, 14 and 21 days). A competitive, antibody-capture, quantitative ELISA was then developed based on the purified fVTG and its respective antiserum. The ELISA was validated by demonstrating parallel binding slopes of dilution curves prepared with plasma from E2-injected males, vitellogenic females, and aqueous egg extracts as compared with purified fVTG standard. Plasma concentrations of VTG as low as 3 ng ml(-1) were detected in the ELISA, for which inter- and intra-assay coefficients of variation were both less than 5%. Furthermore, plasma from control males was unreactive with the fVTG antiserum. The VTG ELISA could be useful for the detection of estrogenic properties associated with certain compounds and could be easily incorporated into standard laboratory toxicity assays using this species.


Biology of Reproduction | 2000

Effects of Insulin-Like Growth Factor-I on In Vitro Final Oocyte Maturation and Ovarian Steroidogenesis in Striped Bass, Morone saxatilis

Gregory M. Weber; Craig V. Sullivan

Abstract Recombinant human (rh) insulin-like growth factor-I (IGF-I) was more potent than rhIGF-II at inducing in vitro germinal vesicle breakdown (GVBD), a marker for resumption of meiosis, in oocytes of striped bass. Treatment of ovarian fragments containing oocytes in intact follicles with rhIGF-I increased concentrations of estradiol-17β and maturation-inducing steroid (MIS) 17,20β,21-trihydoxy-4-pregnen-3-one (20β-S) in the culture medium and decreased testosterone levels. The follicles were too immature for oocytes to complete GVBD in response to 20β-S (MIS incompetent) or hCG. Addition of 20β-S to cultures did not increase the percentage of oocytes completing GVBD in response to rhIGF-I or rhIGF-II. Bovine insulin was without effect on GVBD or steroid production. Incubation of MIS-competent follicles with actinomycin D, cyanoketone, trilostane, 1-heptanol, or 1-octanol had no effect on rhIGF-I-induced GVBD, but attenuated hCG-induced GVBD and 20β-S production. Cycloheximide inhibited rhIGF-I-induced GVBD. Collectively, these observations indicate that IGF-I can induce GVBD via MIS- and transcription-independent pathways without coupled gap junctions between oocytes and granulosa cells or among granulosa cells, but requires protein synthesis to do so. An rhIGF-I analogue that does not bind IGF-binding proteins, des(1,3)IGF-I, was more potent than rhIGF-I in inducing GVBD, suggesting ovarian IGF-binding proteins may inhibit IGF-I action.


Endocrinology | 2001

Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops.

Buel D. Rodgers; Gregory M. Weber; Craig V. Sullivan; Michael A. Levine

In mammals, skeletal muscle mass is negatively regulated by a muscle-derived growth/differentiating factor named myostatin (MSTN) that belongs to the transforming growth factor-β superfamily. Although putative MSTN homologs have been identified from several vertebrates, nonmammalian orthologs remained poorly defined. Thus, we isolated and characterized MSTN complementary DNA clones from the skeletal muscle of the tilapia Oreochromis mossambicus and the white bass Morone chrysops. The nucleic and amino acid sequences from both fish species are highly homologous to the previously identified mammalian and avian orthologs, and both possess conserved cysteine residues and putative RXXR proteolytic processing sites that are common to all transforming growth factor-β family members. Western blotting of conditioned medium from human embryonal kidney (HEK293) cells overexpressing a His-tagged tilapia MSTN indicates that the secreted fish protein is processed in a manner similar to mouse MSTN. However, in contrast ...


Aquaculture | 1992

GnRHa-induced ovulation of brown trout (Salmo trutta) and its effects on egg quality

Costadinos C. Mylonas; Jeffrey M. Hinshaw; Craig V. Sullivan

Abstract The effectiveness of a GnRH analogue (GnRHa) for inducing ovulation in brown trout was examined, and the effects of the maternal hormone-treatment on egg quality and larval development were evaluated. Two injections of 10 μg/kg body weight of GnRHa given 3 days apart effectively induced ovulation. Within 6 days from the second injection, 80% of the injected fish had ovulated compared to only 10% of the control fish. Mean time to ovulation was reduced significantly (P


Biology of Reproduction | 2002

Vitellogenin-Derived Yolk Proteins of White Perch, Morone americana: Purification, Characterization, and Vitellogenin-Receptor Binding1

Naoshi Hiramatsu; Akihiko Hara; K. Hiramatsu; Haruhisa Fukada; Gregory M. Weber; Nancy D. Denslow; Craig V. Sullivan

Abstract The objectives of this study were to 1) purify and characterize vitellogenin-derived yolk proteins of white perch (Morone americana), 2) develop a nonisotopic receptor binding assay for vitellogenin, and 3) identify the yolk protein domains of vitellogenin recognized by the ovarian vitellogenin receptor. Four yolk proteins derived from vitellogenin (YP1, YP2 monomer [YP2m] and dimer [YP2d], and YP3) were isolated from ovaries of vitellogenic perch by selective precipitation, ion exchange chromatography, and gel filtration. The apparent molecular masses of purified YP1, YP2m, and YP2d after gel filtration were 310 kDa, 17 kDa, and 27 kDa, respectively. YP3 appeared in SDS-PAGE as a ∼20-kDa band plus some diffuse smaller bands that could be visualized by staining for phosphoprotein with Coomassie Brilliant Blue complexed with aluminum nitrate. Immunological and biochemical characteristics of YP1, YP2s, and YP3 identified them as white perch lipovitellin, β′-components, and phosvitin, respectively. A novel receptor-binding assay for vitellogenin was developed based on digoxigenin (DIG)-labeled vitellogenin tracer binding to ovarian membrane proteins immobilized in 96-well plates. Lipovitellin from white perch and vitellogenin from perch and other teleosts effectively displaced specifically bound DIG-vitellogenin in the assay, but phosvitin and the β′-component could not, demonstrating for the first time that the lipovitellin domain of teleost vitellogenin mediates its binding to the oocyte receptor. Lipovitellin was less effective than vitellogenin in this regard, suggesting that the remaining yolk protein domains of vitellogenin may interact with its lipovitellin domain to facilitate binding of vitellogenin to its receptor.


Biology of Reproduction | 2005

Multiple Vitellogenins (Vgs) in Mosquitofish (Gambusia affinis): Identification and Characterization of Three Functional Vg Genes and Their Circulating and Yolk Protein Products

Sayumi Sawaguchi; Yasunori Koya; Norio Yoshizaki; Nobuyuki Ohkubo; Tadashi Andoh; Naoshi Hiramatsu; Craig V. Sullivan; Akihiko Hara; Takahiro Matsubara

Abstract The objectives of this study were to characterize multiple forms of vitellogenin (Vg) in mosquitofish (Gambusia affinis) and to discover the fate of each Vg during its processing into product yolk proteins. Two Vg preparations, with apparent masses of 600 kDa (600 Vg) and 400 kDa (400 Vg), were isolated from the plasma of fish treated with estradiol-17β (E2) by various chromatographic procedures. Immunological analyses verified the presence of two different Vg proteins (600 VgA and 600 VgB) in the 600 Vg preparation and of a single protein in the 400 Vg preparation. Three major yolk proteins (Yps) with apparent masses of 560, 400, and 28 kDa were observed in extracts of ovarian follicles from vitellogenic females. Immunological analyses demonstrated that the 400 Vg underwent no change in native mass after being incorporated into oocytes. The 600 Vgs gave rise to a 28 kDa β′-component and a native 560 kDa Yp, which was heterodimeric in structure, consisting of two types of complexes between phosvitin (Pv) and lipovitellin (Lv) heavy- and light-chains. Full-length cDNAs encoding the 600 VgA, 600 VgB, and 400 Vg were isolated from a liver cDNA library of E2 treated fish. Similar to the zebrafish vg3 gene, the 400 Vg cDNA lacked a Pv domain and was classified as an incomplete or phosvitinless (C-type) Vg. The deduced primary structures of 600 VgA and 600 VgB were complete, and these were categorized as type A and type B Vgs, respectively, according to our recent classification scheme. This is the first report on the characterization of three functional Vg genes and their circulating and yolk protein products in any vertebrate species.


Fish Physiology and Biochemistry | 1993

Purification, characterization and immunoassay of striped bass (Morone saxatilis) vitellogenin

Yunxia Tao; Akihiko Hara; Ronald G. Hodson; L. Curr WoodsIII; Craig V. Sullivan

The egg yolk precursor, vitellogenin (VTG), was purified from blood plasma of striped bass by chromatography on hydroxylapatite or DEAE-agarose. The fish were first implanted with estradiol-17β (E2), which induced vitellogenesis. A rabbit antiserum (a-FSPP) raised against plasma from mature female striped bass, and then adsorbed with mature male plasma, was used to detect female-specific plasma protein (FSPP) in the chromatography fractions. Striped bass VTG (s-VTG) was collected from the peak fraction that was induced by E2, reacted with a-FSPP, and contained all detectable phosphoprotein. It appeared as a single band (Mr ≂ 170,000) in SDS-PAGE or Western blots using a-FSPP, and as a pair of closely-spaced phospholipoprotein bands in native gradient-PAGE, suggesting that there is more than one circulating form of s-VTG. The relationship of s-VTG to the yolk proteins was verified using a-FSPP. The antiserum reacted with the main peak from gel filtration of saline ovary extracts, and it specifically immunostained the two main bands in Western blots of the extracts and the yolk granules of mature oocytes. The amino acid composition of s-VTG was similar to that of VTG from other fish and Xenopus. A radial immunodiffusion assay for s-VTG was developed using a-FSPP and purified s-VTG as standard. The s-VTG was not detected in blood plasma of males, immature females, or regressed adult females, but plasma s-VTG levels were highly correlated with plasma E2 and testosterone levels, and oocyte growth, in maturing females. The results indicate that the maturational status of female striped bass can be identified by s-VTG immunoassay.


General and Comparative Endocrinology | 2008

Gender-specific expression of multiple estrogen receptors, growth hormone receptors, insulin-like growth factors and vitellogenins, and effects of 17β-estradiol in the male tilapia (Oreochromis mossambicus)

Lori K. Davis; Andrew L. Pierce; Naoshi Hiramatsu; Craig V. Sullivan; Tetsuya Hirano; E. Gordon Grau

Gender-specific expression of estrogen receptors (ER alpha and ER beta), growth hormone receptors (GHR1 and GHR2), insulin-like growth factors (IGF-I and IGF-II) and three vitellogenins (Vgs A-C) was examined in the liver, gonad, pituitary, and brain of sexually mature male, female, and 17 beta-estradiol (E2)-treated male tilapia (Oreochromis mossambicus). Reflecting greater growth rate in male tilapia, hepatic expression of GHR1, GHR2, IGF-I and IGF-II as well as plasma IGF-I levels were higher in males than in females, whereas the expression of Vgs A-C and ER alpha was higher in females. On the other hand, expression of all genes measured was higher in the ovary than in testis. Forty eight hours after E2 injection (5 microg/g) into male fish, hepatic expression of most transcripts measured were altered to levels that were similar to those seen in females. The changes included decreased expression of GHR1, GHR2, IGF-I, and IGF-II, and increased expression of ER alpha and Vgs A-C. E2 treatment also increased Vg and decreased IGF-I in the plasma. Brain expression of ER alpha, ER beta, GHR1, and IGF-I was higher in females than in males, whereas pituitary expression of GHR2 and IGF-I was lower in females; only brain expression of GHR1 was increased by E2 treatment. These findings suggest that E2 stimulates Vg production primarily through activation of ER alpha and down-regulation of the GH/IGF-I axis, thus shifting energy from somatic growth towards vitellogenesis at the level of the liver.


Transactions of The American Fisheries Society | 1995

Reproduction of White Perch: The Annual Gametogenic Cycle

Leslie F. Jackson; Craig V. Sullivan

Abstract Circulating levels of the sex steroid hormones testosterone (T) and 11-ketotestosterone in males, and 17β-estradiol (E2) and T in females, were measured at monthly intervals in white perch Morone americana for 1 year. The egg yolk precursor vitellogenin was also measured in female blood plasma. The gonadal status of individual fish was assessed through histological examination and measurement of gonadosomatic index (GSI), size-frequency distribution of oocytes, sperm index, spermatocrit, and spermiation response. A biphasic pattern of maturation was seen in both sexes. At the onset of vitellogenesis in females, blood plasma levels of E2 and T increased moderately in November and then increased again to maximal levels during the spawning season in April and early May. All stages of oocyte development were observed in mature females, indicating that the white perch is a multiple-clutch, group-synchronous spawner. In males, androgen levels and GSI increased early in the reproductive cycle during spe...

Collaboration


Dive into the Craig V. Sullivan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin J. Reading

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory M. Weber

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald G. Hodson

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge