Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Creg Darby is active.

Publication


Featured researches published by Creg Darby.


PLOS ONE | 2011

The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes

John M. Chaston; Garret Suen; Sarah L. Tucker; Aaron W. Andersen; Archna Bhasin; Edna Bode; Helge B. Bode; Alexander O. Brachmann; Charles E. Cowles; Kimberly N. Cowles; Creg Darby; Limaris de Léon; Kevin Drace; Zijin Du; Alain Givaudan; Erin E. Herbert Tran; Kelsea A. Jewell; Jennifer J. Knack; Karina C. Krasomil-Osterfeld; Ryan Kukor; Anne Lanois; Phil Latreille; Nancy K. Leimgruber; Carolyn M. Lipke; Renyi Liu; Xiaojun Lu; Eric C. Martens; Pradeep Reddy Marri; Claudine Médigue; Megan L. Menard

Members of the genus Xenorhabdus are entomopathogenic bacteria that associate with nematodes. The nematode-bacteria pair infects and kills insects, with both partners contributing to insect pathogenesis and the bacteria providing nutrition to the nematode from available insect-derived nutrients. The nematode provides the bacteria with protection from predators, access to nutrients, and a mechanism of dispersal. Members of the bacterial genus Photorhabdus also associate with nematodes to kill insects, and both genera of bacteria provide similar services to their different nematode hosts through unique physiological and metabolic mechanisms. We posited that these differences would be reflected in their respective genomes. To test this, we sequenced to completion the genomes of Xenorhabdus nematophila ATCC 19061 and Xenorhabdus bovienii SS-2004. As expected, both Xenorhabdus genomes encode many anti-insecticidal compounds, commensurate with their entomopathogenic lifestyle. Despite the similarities in lifestyle between Xenorhabdus and Photorhabdus bacteria, a comparative analysis of the Xenorhabdus, Photorhabdus luminescens, and P. asymbiotica genomes suggests genomic divergence. These findings indicate that evolutionary changes shaped by symbiotic interactions can follow different routes to achieve similar end points.


BMC Genomics | 2007

Optical mapping as a routine tool for bacterial genome sequence finishing.

Phil Latreille; Stacie Norton; Barry S. Goldman; John Henkhaus; Nancy M. Miller; Brad Barbazuk; Helge B. Bode; Creg Darby; Zijin Du; Steve Forst; Brad Goodner; Heidi Goodrich-Blair; Steven C. Slater

BackgroundIn sequencing the genomes of two Xenorhabdus species, we encountered a large number of sequence repeats and assembly anomalies that stalled finishing efforts. This included a stretch of about 12 Kb that is over 99.9% identical between the plasmid and chromosome of X. nematophila.ResultsWhole genome restriction maps of the sequenced strains were produced through optical mapping technology. These maps allowed rapid resolution of sequence assembly problems, permitted closing of the genome, and allowed correction of a large inversion in a genome assembly that we had considered finished.ConclusionOur experience suggests that routine use of optical mapping in bacterial genome sequence finishing is warranted. When combined with data produced through 454 sequencing, an optical map can rapidly and inexpensively generate an ordered and oriented set of contigs to produce a nearly complete genome sequence assembly.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene

Yi-Cheng Sun; B. Joseph Hinnebusch; Creg Darby

Yersinia pestis, the agent of bubonic plague, evolved from the enteric pathogen Yersinia pseudotuberculosis within the past 20,000 years. Because ancestor and descendant both exist, it is possible to infer steps in molecular evolution by direct experimental approaches. The Y. pestis life cycle includes establishment of a biofilm within its vector, the flea. Although Y. pseudotuberculosis makes biofilms in other environments, it fails to do so in the insect. We show that rcsA, a negative regulator of biofilms that is functional in Y. pseudotuberculosis, is a pseudogene in Y. pestis. Replacement of the pseudogene with the functional Y. pseudotuberculosis rcsA allele strongly represses biofilm formation and essentially abolishes flea biofilms. The conversion of rcsA to a pseudogene during Y. pestis evolution, therefore, was a case of negative selection rather than neutral genetic drift.


Infection and Immunity | 2005

Identification of gmhA, a Yersinia pestis Gene Required for Flea Blockage, by Using a Caenorhabditis elegans Biofilm System

Creg Darby; Sandya L. Ananth; Li Tan; B. Joseph Hinnebusch

ABSTRACT Yersinia pestis, the cause of bubonic plague, blocks feeding by its vector, the flea. Recent evidence indicates that blockage is mediated by an in vivo biofilm. Y. pestis and the closely related Yersinia pseudotuberculosis also make biofilms on the cuticle of the nematode Caenorhabditis elegans, which block this laboratory animals feeding. Random screening of Y. pseudotuberculosis transposon insertion mutants with a C. elegans biofilm assay identified gmhA as a gene required for normal biofilms. gmhA encodes phosphoheptose isomerase, an enzyme required for synthesis of heptose, a conserved component of lipopolysaccharide and lipooligosaccharide. A Y. pestis gmhA mutant was constructed and was severely defective for C. elegans biofilm formation and for flea blockage but only moderately defective in an in vitro biofilm assay. These results validate use of the C. elegans biofilm system to identify genes and pathways involved in Y. pestis flea blockage.


PLOS ONE | 2011

Differential control of Yersinia pestis biofilm formation in vitro and in the flea vector by two c-di-GMP diguanylate cyclases.

Yi-Cheng Sun; Alexandra Koumoutsi; Clayton O. Jarrett; Kevin A. Lawrence; Frank C. Gherardini; Creg Darby; B. Joseph Hinnebusch

Yersinia pestis forms a biofilm in the foregut of its flea vector that promotes transmission by flea bite. As in many bacteria, biofilm formation in Y. pestis is controlled by intracellular levels of the bacterial second messenger c-di-GMP. Two Y. pestis diguanylate cyclase (DGC) enzymes, encoded by hmsT and y3730, and one phosphodiesterase (PDE), encoded by hmsP, have been shown to control biofilm production in vitro via their opposing c-di-GMP synthesis and degradation activities, respectively. In this study, we provide further evidence that hmsT, hmsP, and y3730 are the only three genes involved in c-di-GMP metabolism in Y. pestis and evaluated the two DGCs for their comparative roles in biofilm formation in vitro and in the flea vector. As with HmsT, the DGC activity of Y3730 depended on a catalytic GGDEF domain, but the relative contribution of the two enzymes to the biofilm phenotype was influenced strongly by the environmental niche. Deletion of y3730 had a very minor effect on in vitro biofilm formation, but resulted in greatly reduced biofilm formation in the flea. In contrast, the predominant effect of hmsT was on in vitro biofilm formation. DGC activity was also required for the Hms-independent autoaggregation phenotype of Y. pestis, but was not required for virulence in a mouse model of bubonic plague. Our results confirm that only one PDE (HmsP) and two DGCs (HmsT and Y3730) control c-di-GMP levels in Y. pestis, indicate that hmsT and y3730 are regulated post-transcriptionally to differentially control biofilm formation in vitro and in the flea vector, and identify a second c-di-GMP-regulated phenotype in Y. pestis.


Genetics | 2007

Caenorhabditis elegans Mutants Resistant to Attachment of Yersinia Biofilms

Creg Darby; Amrita Chakraborti; Samuel M. Politz; Calvin C. Daniels; Li Tan; Kevin Drace

The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y. pseudotuberculosis, which bind the C. elegans surface predominantly on the head, can be used to identify additional surface-determining genes. A screen for C. elegans mutants with a biofilm absent on the head (Bah) phenotype identified three novel genes: bah-1, bah-2, and bah-3. The bah-1 and bah-2 mutants have slightly fragile cuticles but are neither Srf nor Bus, suggesting that they are specific for surface components involved in biofilm attachment. A bah-3 mutant has normal cuticle integrity, but shows a stage-specific Srf phenotype. The screen produced alleles of five known surface genes: srf-2, srf-3, bus-4, bus-12, and bus-17. For the X-linked bus-17, a paternal effect was observed in biofilm assays.


Journal of Bacteriology | 2012

The Yersinia pestis Rcs Phosphorelay Inhibits Biofilm Formation by Repressing Transcription of the Diguanylate Cyclase Gene hmsT

Yi-Cheng Sun; Xiao-Peng Guo; B. J. Hinnebusch; Creg Darby

Yersinia pestis, which causes bubonic plague, forms biofilms in fleas, its insect vectors, as a means to enhance transmission. Biofilm development is positively regulated by hmsT, encoding a diguanylate cyclase that synthesizes the bacterial second messenger cyclic-di-GMP. Biofilm development is negatively regulated by the Rcs phosphorelay signal transduction system. In this study, we show that Rcs-negative regulation is accomplished by repressing transcription of hmsT.


Trends in Microbiology | 2008

Uniquely insidious: Yersinia pestis biofilms

Creg Darby

Bubonic plague, one of historys deadliest infections, is transmitted by fleas infected with Yersinia pestis. The bacteria can starve fleas by blocking their digestive tracts, which stimulates the insects to bite repeatedly and thereby infect new hosts. Direct examination of infected fleas, aided by in vitro studies and experiments with the nematode Caenorhabditis elegans, have established that Y. pestis forms a biofilm in the insect. The extracellular matrix of the biofilm seems to contain a homopolymer of N-acetyl-d-glucosamine, which is a constituent of many bacterial biofilms. A regulatory mechanism involved in Y. pestis biofilm formation, cyclic-di-GMP signaling, is also widespread in bacteria; yet only Y. pestis forms biofilms in fleas. Here, the historical background of bubonic plague is briefly described and recent studies investigating the mechanisms by which these unique and deadly biofilms are formed are discussed.


Genetics | 2011

Glycosylation Genes Expressed in Seam Cells Determine Complex Surface Properties and Bacterial Adhesion to the Cuticle of Caenorhabditis elegans

Maria J. Gravato-Nobre; Dave Stroud; Delia O'Rourke; Creg Darby; Jonathan Hodgkin

The surface of the nematode Caenorhabditis elegans is poorly understood but critical for its interactions with the environment and with pathogens. We show here that six genes (bus-2, bus-4, and bus-12, together with the previously cloned srf-3, bus-8, and bus-17) encode proteins predicted to act in surface glycosylation, thereby affecting disease susceptibility, locomotory competence, and sexual recognition. Mutations in all six genes cause resistance to the bacterial pathogen Microbacterium nematophilum, and most of these mutations also affect bacterial adhesion and biofilm formation by Yersinia species, demonstrating that both infection and biofilm formation depend on interaction with complex surface carbohydrates. A new bacterial interaction, involving locomotory inhibition by a strain of Bacillus pumilus, reveals diversity in the surface properties of these mutants. Another biological property—contact recognition of hermaphrodites by males during mating—was also found to be impaired in mutants of all six genes. An important common feature is that all are expressed most strongly in seam cells, rather than in the main hypodermal syncytium, indicating that seam cells play the major role in secreting surface coat and consequently in determining environmental interactions. To test for possible redundancies in gene action, the 15 double mutants for this set of genes were constructed and examined, but no synthetic phenotypes were observed. Comparison of the six genes shows that each has distinctive properties, suggesting that they do not act in a linear pathway.


Fems Microbiology Letters | 2009

The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms.

Yi-Cheng Sun; Alexandra Koumoutsi; Creg Darby

A few Yersinia pseudotuberculosis strains form biofilms on the head of the nematode Caenorhabditis elegans, but numerous others do not. We show that a widely used Y. pseudotuberculosis strain, YPIII, is biofilm positive because of a mutation in phoP, which encodes the response regulator of a two-component system. For two wild-type Y. pseudotuberculosis that do not make biofilms on C. elegans, deletion of phoP was sufficient to produce robust biofilms. In Yersinia pestis, a phoP mutant made more extensive biofilms in vitro than did the wild type. Expression of HmsT, a diguanylate cyclase that positively regulates biofilms, is diminished in Y. pseudotuberculosis strains with functional PhoP.

Collaboration


Dive into the Creg Darby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi-Cheng Sun

Peking Union Medical College

View shared research outputs
Top Co-Authors

Avatar

B. Joseph Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Tan

University of Alabama

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helge B. Bode

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Aaron W. Andersen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Archna Bhasin

Valdosta State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge