Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristian Botta is active.

Publication


Featured researches published by Cristian Botta.


PLOS ONE | 2014

In Vitro Selection and Characterization of New Probiotic Candidates from Table Olive Microbiota

Cristian Botta; Tomaz Langerholc; Avrelija Cencič; Luca Cocolin

To date, only a few studies have investigated the complex microbiota of table olives in order to identify new probiotic microorganisms, even though this food matrix has been shown to be a suitable source of beneficial lactic acid bacteria (LAB). Two hundred and thirty eight LAB, belonging to Lactobacillus plantarum, Lactobacillus pentosus and Leuconostoc mesenteroides species, and isolated from Nocellara Etnea table olives, have been screened in this survey through an in vitro approach. A simulation of transit tolerance in the upper human gastrointestinal tract, together with autoaggregation and hydrophobicity, have been decisive in reducing the number of LAB to 17 promising probiotics. None of the selected strains showed intrinsic resistances towards a broad spectrum of antibiotics and were therefore accurately characterized on an undifferentiated and 3D functional model of the human intestinal tract made up of H4-1 epithelial cells. As far as the potential colonization of the intestinal tract is concerned, a high adhesion ratio was observed for Lb. plantarum O2T60C (over 9%) when tested in the 3D functional model, which closely mimics real intestinal conditions. The stimulation properties towards the epithelial barrier integrity and the in vitro inhibition of L. monocytogenes adhesion and invasion have also been assessed. Lb. plantarum S1T10A and S11T3E enhanced trans-epithelial electrical resistance (TEER) and therefore the integrity of the polarized epithelium in the 3D model. Moreover, S11T3E showed the ability to inhibit L. monocytogenes invasion in the undifferentiated epithelial model. The reduction in L. monocytogenes infection, together with the potential enhancement of barrier integrity and an adhesion ratio that was above the average in the 3D functional model (6.9%) would seem to suggest the Lb. plantarum S11T3E strain as the most interesting candidate for possible in vivo animal and human trials.


PLOS ONE | 2013

NaOH-Debittering Induces Changes in Bacterial Ecology during Table Olives Fermentation

Luca Cocolin; Valentina Alessandria; Cristian Botta; Roberta Gorra; Francesca De Filippis; Danilo Ercolini; Kalliopi Rantsiou

Limited information is available on the impact of the NaOH treatment on table olive fermentations, and for this reason a polyphasic approach has been adopted here to investigate its effect on the fermentation dynamics and bacterial biodiversity. The microbial counts of the main groups involved in the transformation have not shown any differences, apart from a more prompt start of the fermentation when the olives were subjected to the NaOH treatment. The data produced by culture-independent analyses highlighted that the fermentation of table olives not treated with NaOH is the result of the coexistence of two different ecosystems: the surface of the olives and the brines. A sodium hydroxide treatment not only eliminates this difference, but also affects the bacterial ecology of the olives to a great extent. As proved by high-throughput sequencing, the fermentation of the olives not treated with NaOH was characterized by the presence of halophilic bacteria, which were substituted by Lactobacillus at the later stages of the fermentation, while enterobacteria were dominant when the olives were treated with sodium hydroxide. Higher biodiversity was found for Lactobacillus plantarum isolated during untreated fermentation. Different biotypes were found on the olive surface and in the brines. When the debittering process was carried out, a decrease in the number of L. plantarum biotypes were observed and those originating from the surface of the olive did not differentiate from the ones present in the brines.


Frontiers in Microbiology | 2012

Microbial dynamics and biodiversity in table olive fermentation: culture-dependent and -independent approaches

Cristian Botta; Luca Cocolin

The microbial ecology of the table olive fermentation process is a complex set of dynamics in which the roles of the lactic acid bacteria (LAB) and yeast populations are closely related, and this synergism is of fundamental importance to obtain high quality products. Several studies on the ecology of table olives, both in spontaneous fermentations and in inoculated ones, have focused on the identification and characterization of yeasts, as they play a key role in the definition of the final organoleptic profiles through the production of volatile compounds. Moreover, these are able to promote the growth of LAB, which is responsible for the stabilization of the final product through the acidification activity and the inhibition of the growth of pathogenic bacteria. The current empirical production process of table olives could be improved through the development of mixed starter cultures. These can only be developed after a deep study of the population dynamics of yeasts and LAB by means of molecular methods. Until now, most studies have exploited culture-dependent approaches to define the natural microbiota of brine and olives. These approaches have identified two main species of LAB, namely Lactobacillus plantarum and L. pentosus, while, as far as yeasts are concerned, the most frequently isolated genera are Candida, Pichia, and Saccharomyces. However, there are a few studies in literature in which a culture-independent approach has been employed. This review summarizes the state of the art of the microbial ecology of table olive fermentations and it focuses on the different approaches and molecular methods that have been applied.


Meat Science | 2012

Genotypic characterization of Brochothrix thermosphacta isolated during storage of minced pork under aerobic or modified atmosphere packaging conditions.

Olga S. Papadopoulou; Agapi I. Doulgeraki; Cristian Botta; Luca Cocolin; George-John E. Nychas

A total of 306 colonies were isolated from the selective medium for Brochothrix spp., during the spoilage of minced pork stored at 0, 5, 10 and 15 °C and packed aerobically and under modified atmosphere packaging conditions (MAP). Brochothrix biodiversity was assessed by Pulsed Field Gel Electrophoresis (PFGE), and representative strains were further analysed by Rep-PCR using primer (GTG)₅ and Sau-PCR with primers SAG₁ and SAG₂. Although, different results were obtained from the different methods, a significant diversity among isolates recovered from aerobic conditions was observed. On the contrary, isolates from MAP showed a lower degree of heterogeneity. The storage conditions affected the Brochothrix diversity, the strains isolated in the initial stage being different from the ones present at the final stage of storage at chill temperatures. A representative number of isolates, based on the results of the clustering by molecular methods, were subjected to 16S rRNA gene sequencing, revealing that all belonged to Brochothrix thermosphacta.


Scientific Reports | 2017

Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism

Cristian Botta; Alberto Acquadro; Anna Greppi; Lorenzo Barchi; Marta Bertolino; Luca Cocolin; Kalliopi Rantsiou

The butyrogenic capability of Lactobacillus (L.) plantarum is highly dependent on the substrate type and so far not assigned to any specific metabolic pathway. Accordingly, we compared three genomes of L. plantarum that showed a strain-specific capability to produce butyric acid in human cells growth media. Based on the genomic analysis, butyric acid production was attributed to the complementary activities of a medium-chain thioesterase and the fatty acid synthase of type two (FASII). However, the genomic islands of discrepancy observed between butyrogenic L. plantarum strains (S2T10D, S11T3E) and the non-butyrogenic strain O2T60C do not encompass genes of FASII, but several cassettes of genes related to sugar metabolism, bacteriocins, prophages and surface proteins. Interestingly, single amino acid substitutions predicted from SNPs analysis have highlighted deleterious mutations in key genes of glutamine metabolism in L. plantarum O2T60C, which corroborated well with the metabolic deficiency suffered by O2T60C in high-glutamine growth media and its consequent incapability to produce butyrate. In parallel, the increase of glutamine content induced the production of butyric acid by L. plantarum S2T10D. The present study reveals a previously undescribed metabolic route for butyric acid production in L. plantarum, and a potential involvement of the glutamine uptake in its regulation.


International Journal of Food Microbiology | 2017

Potentially active spoilage bacteria community during the storage of vacuum packaged beefsteaks treated with aqueous ozone and electrolyzed water

Cristian Botta; Ilario Ferrocino; Maria Chiara Cavallero; Simonetta Riva; Manuela Giordano; Luca Cocolin

The microbial contamination that occurs during the slaughtering process and during handling of the meat results in a shortening of the shelf-life of meat. In this study, which has had the aim of extending the shelf life of beefsteaks, pilot-scale treatments were carried out with aqueous ozone (AO) and electrolyzed water (EW) before vacuum packaging (VP). The development of the potentially active microbiota and the associated volatilome were followed over 15days of storage under refrigerated conditions (4°C), in order to define the potential long-term effects of the treatments and storage condition on microbiota. The targeted RNA-based amplicon sequencing identified Pseudomonas fragi as the most frequent species before and after the treatments with AO and EW, as well as in the untreated control. The tested treatments did not reduce the overall presence of this species, but they affected the intra-species distribution of its oligotypes, albeit slightly. With the progression of the refrigerated storage and the reduction of the oxygen availability, Lactobacillus sakei, Leuconostoc gasicomitatum and Lactococcus piscium became the dominant, potentially active, beef microbiota, as confirmed by microbiological data. When the OTU abundances and volatilome were coupled, a significant association was observed between the organic acids, esters and aldehydes and these lactic acid bacteria species. In spite of the limited effectiveness of the treatments over the short and long term, this study has provided a detailed view of beef spoilage using RNA as the sequencing target, strengthening and confirming the current knowledge based on DNA-amplicon sequencing.


Biomedicine & Pharmacotherapy | 2017

Cytokine production in vitro and in rat model of colitis in response to Lactobacillus plantarum LS/07

Jana Štofilová; Tomaž Langerholc; Cristian Botta; Primož Treven; Lidija Gradišnik; Rastislav Salaj; Alena Šoltésová; Izabela Bertková; Zdenka Hertelyová; Alojz Bomba

Over the past decade, it has become clear that specific probiotic lactobacilli are valuable in the prevention and treatment of infectious and inflammatory diseases of gastrointestinal tract but their successful application would benefit greatly from a better understanding of the mechanisms of individual strains. Hence, each probiotic strain should be characterized for their immune activity before being proposed for clinical applications. The aim of the study was to characterize the immunomodulatory activity of the strain Lactobacillus (L.) plantarum LS/07 in vitro using functional gut model and to study its anti-inflammatory potential in dextran sulphate sodium (DSS)-induced colitis in rats. We showed that L. plantarum LS/07 induced production of IL-10 in macrophages derived from blood monocytes as well as monocyte/macrophages cell line stimulated indirectly via enterocytes in vitro. In rat model of colitis, L. plantarum LS/07 attenuated the DSS-induced signs of inflammatory process in colon such as weight loss, diarrhoea, infiltration of inflammatory cells associated with decreased colon weight/length ratio, inhibited gut mucosa destruction and depletion of goblet cells. Moreover, the strain increased the concentration of anti-inflammatory cytokine IL-10 in mucosal tissue. In conclusion, the protective effects of L. plantarum LS/07 in the DSS-induced colitis model seem to be related to the stimulation of IL-10 and the restoration of goblet cells and indicate it as a good candidate to prevent and treat diseases associated with inflammation.


Applied and Environmental Microbiology | 2018

Dynamics and Biodiversity of Bacterial and Yeast Communities during Fermentation of Cocoa Beans

Jatziri Mota-Gutierrez; Cristian Botta; Ilario Ferrocino; Manuela Giordano; Marta Bertolino; Paola Dolci; Marcella Cannoni; Luca Cocolin

In spite of the limited effectiveness of the considered inoculated starter strains, this study provides new information on the microbial development of box and heap cocoa fermentations, under inoculated and noninoculated conditions, as we coupled yeast/bacterial amplicon-based sequencing data with microbial metabolite detection. The information so far available suggests that microbial communities have played an important role in the evolution of aroma compounds. Understanding the pathways that microorganisms follow during the formation of aromas could be used to improve the fermentation processes and to enhance chocolate quality. ABSTRACT Forastero hybrid cocoa bean fermentations have been carried out in a box (B) and in a heap (H), with or without the inoculation of Saccharomyces cerevisiae and Torulaspora delbrueckii as starter cultures. The bacteria, yeasts, and microbial metabolites (volatile and nonvolatile organic compounds) were monitored during fermentation to assess the connection between microbiota and the release of metabolites during this process. The presence of starter cultures was detected, by means of culture-dependent analysis, during the first 2 days of both fermentations. However, no statistical difference was observed in any of the physicochemical or microbiological analyses. Plate counts revealed the dominance of yeasts at the beginning of both fermentations, and these were followed by acetic acid bacteria (AAB) and lactic acid bacteria (LAB). Hanseniaspora opuntiae, S. cerevisiae, Pichia pijperi, Acetobacter pasteurianus, and Lactobacillus fermentum were the most abundant operational taxonomic units (OTUs) during both fermentation processes (B and H), although different relative abundances were observed. Only the diversity of the fungal species indicated a higher level of complexity in the B fermentations than in the H fermentations (P < 0.05), as well as a statistically significant difference between the initially inoculated starter cultures (P < 0.01). However, the microbial metabolite analysis indicated different distributions of the volatile and nonvolatile compounds between the two procedures, that is, B and H (P < 0.05), rather than between the inoculated and noninoculated fermentations. The box fermentations showed faster carbohydrate metabolism and greater production of organic acid compounds, which boosted the formation of alcohols and esters, than did the heap fermentations. Overall, the microbial dynamics and associations between the bacteria, yeasts, and metabolites were found to depend on the type of fermentation. IMPORTANCE In spite of the limited effectiveness of the considered inoculated starter strains, this study provides new information on the microbial development of box and heap cocoa fermentations, under inoculated and noninoculated conditions, as we coupled yeast/bacterial amplicon-based sequencing data with microbial metabolite detection. The information so far available suggests that microbial communities have played an important role in the evolution of aroma compounds. Understanding the pathways that microorganisms follow during the formation of aromas could be used to improve the fermentation processes and to enhance chocolate quality.


Food Microbiology | 2017

Potential probiotic Pichia kudriavzevii strains and their ability to enhance folate content of traditional cereal-based African fermented food

Anna Greppi; Fabien Saubade; Cristian Botta; Christèle Humblot; Jean-Pierre Guyot; Luca Cocolin


Food Microbiology | 2018

Staphylococcus aureus undergoes major transcriptional reorganization during growth with Enterococcus faecalis in milk

Gabriela Nogueira Viçosa; Cristian Botta; Ilario Ferrocino; Marta Bertolino; Marco Ventura; Luís Augusto Nero; Luca Cocolin

Collaboration


Dive into the Cristian Botta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge