Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristian Ripoli is active.

Publication


Featured researches published by Cristian Ripoli.


Journal of Cellular Physiology | 2008

Extremely low‐frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Cav1‐channel activity

Roberto Piacentini; Cristian Ripoli; Daniele Mezzogori; Gian Battista Azzena; Claudio Grassi

We previously reported that exposure to extremely low‐frequency electromagnetic fields (ELFEFs) increases the expression and function of voltage‐gated Ca2+ channels and that Ca2+ influx through Cav1 channels plays a key role in promoting the neuronal differentiation of neural stem/progenitor cells (NSCs). The present study was conducted to determine whether ELFEFs influence the neuronal differentiation of NSCs isolated from the brain cortices of newborn mice by modulating Cav1‐channel function. In cultures of differentiating NSCs exposed to ELFEFs (1 mT, 50 Hz), the percentage of cells displaying immunoreactivity for neuronal markers (β‐III‐tubulin, MAP2) and for Cav1.2 and Cav1.3 channels was markedly increased. NSC‐differentiated neurons in ELFEF‐exposed cultures also exhibited significant increases in spontaneous firing, in the percentage of cells exhibiting Ca2+ transients in response to KCl stimulation, in the amplitude of these transients and of Ca2+ currents generated by the activation of Cav1 channels. When the Cav1‐channel blocker nifedipine (5 µM) was added to the culture medium, the neuronal yield of NSC differentiation dropped significantly, and ELFEF exposure no longer produced significant increases in β‐III‐tubulin‐ and MAP2‐immunoreactivity rates. In contrast, the effects of ELFEFs were preserved when NSCs were cultured in the presence of either glutamate receptor antagonists or Cav2.1‐ and Cav2.2‐channel blockers. ELFEF stimulation during the first 24 h of differentiation caused Cav1‐dependent increases in the number of cells displaying CREB phosphorylation. Our data suggest that ELFEF exposure promotes neuronal differentiation of NSCs by upregulating Cav1‐channel expression and function. J. Cell. Physiol. 215: 129–139, 2008.


Molecular Neurobiology | 2012

Infectious agents and neurodegeneration.

Giovanna De Chiara; Maria Elena Marcocci; Rossella Sgarbanti; Livia Civitelli; Cristian Ripoli; Roberto Piacentini; Enrico Garaci; Claudio Grassi; Anna Teresa Palamara

A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.


Proceedings of the National Academy of Sciences of the United States of America | 2012

A role for neuronal cAMP responsive-element binding (CREB)-1 in brain responses to calorie restriction

Salvatore Fusco; Cristian Ripoli; Maria Vittoria Podda; Sofia Chiatamone Ranieri; Lucia Leone; Gabriele Toietta; Michael W. McBurney; Günther Schütz; Antonella Riccio; Claudio Grassi; Tommaso Galeotti; Giovambattista Pani

Calorie restriction delays brain senescence and prevents neurodegeneration, but critical regulators of these beneficial responses other than the NAD+-dependent histone deacetylase Sirtuin-1 (Sirt-1) are unknown. We report that effects of calorie restriction on neuronal plasticity, memory and social behavior are abolished in mice lacking cAMP responsive-element binding (CREB)-1 in the forebrain. Moreover, CREB deficiency drastically reduces the expression of Sirt-1 and the induction of genes relevant to neuronal metabolism and survival in the cortex and hippocampus of dietary-restricted animals. Biochemical studies reveal a complex interplay between CREB and Sirt-1: CREB directly regulates the transcription of the sirtuin in neuronal cells by binding to Sirt-1 chromatin; Sirt-1, in turn, is recruited by CREB to DNA and promotes CREB-dependent expression of target gene peroxisome proliferator-activated receptor-γ coactivator-1α and neuronal NO Synthase. Accordingly, expression of these CREB targets is markedly reduced in the brain of Sirt KO mice that are, like CREB-deficient mice, poorly responsive to calorie restriction. Thus, the above circuitry, modulated by nutrient availability, links energy metabolism with neurotrophin signaling, participates in brain adaptation to nutrient restriction, and is potentially relevant to accelerated brain aging by overnutrition and diabetes.


Experimental Neurology | 2010

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice

Bruna Cuccurazzu; Lucia Leone; Maria Vittoria Podda; Roberto Piacentini; Elisa Riccardi; Cristian Ripoli; Gian Battista Azzena; Claudio Grassi

Throughout life, new neurons are continuously generated in the hippocampus, which is therefore a major site of structural plasticity in the adult brain. We recently demonstrated that extremely low-frequency electromagnetic fields (ELFEFs) promote the neuronal differentiation of neural stem cells in vitro by up-regulating Ca(v)1-channel activity. The aim of the present study was to determine whether 50-Hz/1 mT ELFEF stimulation also affects adult hippocampal neurogenesis in vivo, and if so, to identify the molecular mechanisms underlying this action and its functional impact on synaptic plasticity. ELFEF exposure (1 to 7 h/day for 7 days) significantly enhanced neurogenesis in the dentate gyrus (DG) of adult mice, as documented by increased numbers of cells double-labeled for 5-bromo-deoxyuridine (BrdU) and doublecortin. Quantitative RT-PCR analysis of hippocampal extracts revealed significant ELFEF exposure-induced increases in the transcription of pro-neuronal genes (Mash1, NeuroD2, Hes1) and genes encoding Ca(v)1.2 channel α(1C) subunits. Increased expression of NeuroD1, NeuroD2 and Ca(v)1 channels was also documented by Western blot analysis. Immunofluorescence experiments showed that, 30 days after ELFEF stimulation, roughly half of the newly generated immature neurons had survived and become mature dentate granule cells (as shown by their immunoreactivity for both BrdU and NeuN) and were integrated into the granule cell layer of the DG. Electrophysiological experiments demonstrated that the new mature neurons influenced hippocampal synaptic plasticity, as reflected by increased long-term potentiation. Our findings show that ELFEF exposure can be an effective tool for increasing in vivo neurogenesis, and they could lead to the development of novel therapeutic approaches in regenerative medicine.


Neurobiology of Aging | 2011

HSV-1 promotes Ca2+-mediated APP phosphorylation and Aβ accumulation in rat cortical neurons

Roberto Piacentini; Livia Civitelli; Cristian Ripoli; Maria Elena Marcocci; Giovanna De Chiara; Enrico Garaci; Gian Battista Azzena; Anna Teresa Palamara; Claudio Grassi

Epidemiological and experimental findings suggest that chronic infection with Herpes simplex virus type 1 (HSV-1) may be a risk factor for Alzheimers disease (AD), but the molecular mechanisms underlying this association have not been fully identified. We investigated the effects of HSV-1 on excitability and intracellular calcium signaling in rat cortical neurons and the impact of these effects on amyloid precursor protein (APP) processing and the production of amyloid-β peptide (Aβ). Membrane depolarization triggering firing rate increases was observed shortly after neurons were challenged with HSV-1 and was still evident 12 hours postinfection. These effects depended on persistent sodium current activation and potassium current inhibition. The virally induced hyperexcitability triggered intracellular Ca(2+) signals that significantly increased intraneuronal Ca(2+) levels. It also enhanced activity- and Ca(2+)-dependent APP phosphorylation and intracellular accumulation of Aβ42. These findings indicate that HSV-1 causes functional changes in cortical neurons that promote APP processing and Aβ production, and they are compatible with the co-factorial role for HSV-1 in the pathogenesis of AD suggested by previous findings.


PLOS ONE | 2010

APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells

Giovanna De Chiara; Maria Elena Marcocci; Livia Civitelli; Rafaela Argnani; Roberto Piacentini; Cristian Ripoli; Roberto Manservigi; Claudio Grassi; Enrico Garaci; Anna Teresa Palamara

Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimers disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ1-40 and Aβ1-42. Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD.


Clinical Neurophysiology | 2011

P22.22 Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice

Lucia Leone; Bruna Cuccurazzu; Maria Vittoria Podda; Roberto Piacentini; Elisa Riccardi; Cristian Ripoli; Gian Battista Azzena; Claudio Grassi

Introduction: Paired associative stimulation (PAS) at an interstimulus interval (ISI) of 25 ms produces long term potentiation (LTP)-like effect, but each pair occurs at intervals for producing short afferent inhibition (SAI). This implies that inhibitory mechanisms may play a role in producing LTP-like effects of PAS. Objectives: We assessed the inhibitory synaptic pathways by measuring short-interval intracortical inhibition (SICI). Methods: Twenty-two healthy volunteers (9 females, 34 yrs on average) were recruited. Stimulus intensities were adjusted so that at the start of PAS, the test motor evoked potential (MEP) was suppressed to 60 80% control (SAI). SICI was assessed with a threshold tracking technique using a standard 0.2 mV MEP. Inhibition is expressed as the increase in stimulation intensity needed to maintain 0.2 mV MEP constant in the presence of a conditioning stimulus (CS) of 70% resting motor threshold. Thus high values indicate strong inhibition. Results: MEPs increased by an average of 1.55±0.19 (SE) after PAS, but ranged from 0.54 to 3.67. We divided the subjects into three groups; good responders (1 < PAS effect < 2, n = 11), poor responders (PAS effect < 1, n = 7) and outliers (PAS effect 2, n = 4). Before PAS, good responders had strong SICI at ISI 1.8 to 5 ms compared to poor responders. SICI at ISI 3 ms was 27.3±4.5% in good responders and 4.9±4.7% in poor responders (p = 0.004). SICI was significantly correlated with PAS effect (r = 0.61, p = 0.007). SICI in the outliers (who were musicians) fell out of the 95% confidence interval in this correlation. Conclusions: The relationship between the initial level of SICI and the response to PAS is compatible with the following. The PAS effect relies on increased excitability of late indirect (I)-wave generating mechanisms. SICI has its primary effect on late I-waves. Thus individuals with good SICI may have prominent late I-waves that are readily inhibited by CS; however the same I-waves may be beneficial for PAS.


Scientific Reports | 2016

Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory

Mauro Fa; Daniela Puzzo; Roberto Piacentini; Agnieszka Staniszewski; Hong Zhang; María Antonia Baltrons; D. D. Li Puma; Ishita Chatterjee; Jing-Cheng Li; Faisal Saeed; Henry L. Berman; Cristian Ripoli; Walter Gulisano; Juana Gonzalez; H. Tian; J. A. Costa; P. Lopez; Eliot J. Davidowitz; Wai Haung Yu; V. Haroutunian; L. M. Brown; Agostino Palmeri; Einar M. Sigurdsson; Karen Duff; Andrew F. Teich; Lawrence S. Honig; M. Sierks; James G. Moe; Luciano D’Adamio; Claudio Grassi

Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer’s disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology.


Scientific Reports | 2016

Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression

Maria Vittoria Podda; Sara Cocco; Alessia Mastrodonato; Salvatore Fusco; Lucia Leone; Saviana Antonella Barbati; Claudia Colussi; Cristian Ripoli; Claudio Grassi

The effects of transcranial direct current stimulation (tDCS) on brain functions and the underlying molecular mechanisms are yet largely unknown. Here we report that mice subjected to 20-min anodal tDCS exhibited one-week lasting increases in hippocampal LTP, learning and memory. These effects were associated with enhanced: i) acetylation of brain-derived neurotrophic factor (Bdnf) promoter I; ii) expression of Bdnf exons I and IX; iii) Bdnf protein levels. The hippocampi of stimulated mice also exhibited enhanced CREB phosphorylation, pCREB binding to Bdnf promoter I and recruitment of CBP on the same regulatory sequence. Inhibition of acetylation and blockade of TrkB receptors hindered tDCS effects at molecular, electrophysiological and behavioral levels. Collectively, our findings suggest that anodal tDCS increases hippocampal LTP and memory via chromatin remodeling of Bdnf regulatory sequences leading to increased expression of this gene, and support the therapeutic potential of tDCS for brain diseases associated with impaired neuroplasticity.


Neurobiology of Aging | 2013

Effects of different amyloid β-protein analogues on synaptic function

Cristian Ripoli; Roberto Piacentini; Elisa Riccardi; Lucia Leone; Domenica Donatella Li Puma; Gal Bitan; Claudio Grassi

Perisynaptic accumulations of amyloid β-protein (Aβ) play a critical role in the synaptic dysfunction underlying the cognitive impairment observed in Alzheimers disease. The methionine residue at position 35 (Met35) in Aβ is highly subject to oxidation in Alzheimers disease brains. In hippocampal brain slices we found that long-term potentiation at CA3-CA1 synapses was significantly inhibited by wild type Aβ42 in which Met35 is reduced, but not by Aβ42 harboring Met35 sulfoxide. Similar differences were observed when basal synaptic transmission was investigated in autaptic hippocampal neurons. The significant decreases in excitatory postsynaptic current amplitude, vesicle release probability and miniature excitatory postsynaptic current frequency caused by 20-minute exposure to wild type Aβ42 were not observed after exposure to Aβ42 harboring Met35 sulfoxide. With longer (24-hour) Aβ treatments, this early impairment of the presynaptic terminal function extended to involve the postsynaptic side as well. The Met35 oxidation also affected Aβ42 negative impact on dendritic spine density and expression of pre- and postsynaptic proteins (synaptophysin and postsynaptic density protein-95). Our findings suggest that oxidation of Met35 is critical for molecular, structural, and functional determinants of Aβ42 synaptotoxicity.

Collaboration


Dive into the Cristian Ripoli's collaboration.

Top Co-Authors

Avatar

Claudio Grassi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Roberto Piacentini

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucia Leone

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Domenica Donatella Li Puma

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Enrico Garaci

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Giovanna De Chiara

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elisa Riccardi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Livia Civitelli

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge