Livia Civitelli
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Livia Civitelli.
Molecular Neurobiology | 2012
Giovanna De Chiara; Maria Elena Marcocci; Rossella Sgarbanti; Livia Civitelli; Cristian Ripoli; Roberto Piacentini; Enrico Garaci; Claudio Grassi; Anna Teresa Palamara
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host’s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.
Neurobiology of Aging | 2011
Roberto Piacentini; Livia Civitelli; Cristian Ripoli; Maria Elena Marcocci; Giovanna De Chiara; Enrico Garaci; Gian Battista Azzena; Anna Teresa Palamara; Claudio Grassi
Epidemiological and experimental findings suggest that chronic infection with Herpes simplex virus type 1 (HSV-1) may be a risk factor for Alzheimers disease (AD), but the molecular mechanisms underlying this association have not been fully identified. We investigated the effects of HSV-1 on excitability and intracellular calcium signaling in rat cortical neurons and the impact of these effects on amyloid precursor protein (APP) processing and the production of amyloid-β peptide (Aβ). Membrane depolarization triggering firing rate increases was observed shortly after neurons were challenged with HSV-1 and was still evident 12 hours postinfection. These effects depended on persistent sodium current activation and potassium current inhibition. The virally induced hyperexcitability triggered intracellular Ca(2+) signals that significantly increased intraneuronal Ca(2+) levels. It also enhanced activity- and Ca(2+)-dependent APP phosphorylation and intracellular accumulation of Aβ42. These findings indicate that HSV-1 causes functional changes in cortical neurons that promote APP processing and Aβ production, and they are compatible with the co-factorial role for HSV-1 in the pathogenesis of AD suggested by previous findings.
PLOS ONE | 2010
Giovanna De Chiara; Maria Elena Marcocci; Livia Civitelli; Rafaela Argnani; Roberto Piacentini; Cristian Ripoli; Roberto Manservigi; Claudio Grassi; Enrico Garaci; Anna Teresa Palamara
Lifelong latent infections of the trigeminal ganglion by the neurotropic herpes simplex virus type 1 (HSV-1) are characterized by periodic reactivation. During these episodes, newly produced virions may also reach the central nervous system (CNS), causing productive but generally asymptomatic infections. Epidemiological and experimental findings suggest that HSV-1 might contribute to the pathogenesis of Alzheimers disease (AD). This multifactorial neurodegenerative disorder is related to an overproduction of amyloid beta (Aβ) and other neurotoxic peptides, which occurs during amyloidogenic endoproteolytic processing of the transmembrane amyloid precursor protein (APP). The aim of our study was to identify the effects of productive HSV-1 infection on APP processing in neuronal cells. We found that infection of SH-SY5Y human neuroblastoma cells and rat cortical neurons is followed by multiple cleavages of APP, which result in the intra- and/or extra-cellular accumulation of various neurotoxic species. These include: i) APP fragments (APP-Fs) of 35 and 45 kDa (APP-F35 and APP-F45) that comprise portions of Aβ; ii) N-terminal APP-Fs that are secreted; iii) intracellular C-terminal APP-Fs; and iv) Aβ1-40 and Aβ1-42. Western blot analysis of infected-cell lysates treated with formic acid suggests that APP-F35 may be an Aβ oligomer. The multiple cleavages of APP that occur in infected cells are produced in part by known components of the amyloidogenic APP processing pathway, i.e., host-cell β-secretase, γ-secretase, and caspase-3-like enzymes. These findings demonstrate that HSV-1 infection of neuronal cells can generate multiple APP fragments with well-documented neurotoxic potentials. It is tempting to speculate that intra- and extracellular accumulation of these species in the CNS resulting from repeated HSV-1 reactivation could, in the presence of other risk factors, play a co-factorial role in the development of AD.
The EMBO Journal | 2003
Vanessa Brevet; Anne-Sophie Berthiau; Livia Civitelli; Pierluigi Donini; Vera Schramke; Vincent Géli; Fiorentina Ascenzioni; Eric Gilson
The number of telomeric DNA repeats at chromosome ends is maintained around a mean value by a dynamic balance between elongation and shortening. In particular, proteins binding along the duplex part of telomeric DNA set the number of repeats by progressively limiting telomere growth. The paradigm of this counting mechanism is the Rap1 protein in Saccharomyces cerevisiae. We demonstrate here that a Rap1‐independent mechanism regulates the number of yeast telomeric repeats (TG1–3) and of vertebrate repeats (T2AG3) when TEL1, a yeast ortholog of the human gene encoding the ATM kinase, is inactivated. In addition, we show that a T2AG3‐only telomere can be formed and maintained in humanized yeast cells carrying a template mutation of the gene encoding the telomerase RNA, which leads to the synthesis of vertebrate instead of yeast repeats. Genetic and biochemical evidences indicate that this telomere is regulated in a Rap1‐independent manner, both in TEL1 and in tel1Δ humanized yeast cells. Altogether, these findings shed light on multiple repeat‐counting mechanisms, which may share critical features between lower and higher eukaryotes.
Cellular Microbiology | 2015
Donatella Amatore; Rossella Sgarbanti; Katia Aquilano; Sara Baldelli; Dolores Limongi; Livia Civitelli; Lucia Nencioni; Enrico Garaci; Maria Rosa Ciriolo; Anna Teresa Palamara
An overproduction of reactive oxygen species (ROS) mediated by NADPH oxidase 2 (NOX2) has been related to airway inflammation typical of influenza infection. Virus‐induced oxidative stress may also control viral replication, but the mechanisms underlying ROS production, as well as their role in activating intracellular pathways and specific steps of viral life cycle under redox control have to be fully elucidated. In this study, we demonstrate that influenza A virus infection of lung epithelial cells causes a significant ROS increase that depends mainly on NOX4, which is upregulated at both mRNA and protein levels, while the expression of NOX2, the primary source of ROS in inflammatory cells, is downregulated. Inhibition of NOX4 activity through chemical inhibitors or RNA silencing blocks the ROS increase, prevents MAPK phosphorylation, and inhibits viral ribonucleoprotein (vRNP) nuclear export and viral release. Overall these data, obtained in cell lines and primary culture, describe a so far unrecognized role for NOX4‐derived ROS in activating redox‐regulated intracellular pathways during influenza virus infection and highlight their relevance in controlling specific steps of viral replication in epithelial cells. Pharmacological modulation of NOX4‐mediated ROS production may open the way for new therapeutic approaches to fighting influenza by targeting cell and not the virus.
PLOS ONE | 2012
Maria Gabriella Torcia; Lucia Nencioni; Ann Maria Clemente; Livia Civitelli; Ignacio Celestino; Dolores Limongi; Giulia Fadigati; Eloisa Perissi; Federico Cozzolino; Enrico Garaci; Anna Teresa Palamara
Background Susceptibility to viral infections as well as their severity are higher in men than in women. Heightened antiviral responses typical of women are effective for rapid virus clearance, but if excessively high or prolonged, can result in chronic/inflammatory pathologies. We investigated whether this variability could be in part attributable to differences in the response to the Toll-Like Receptors (TLR) more involved in the virus recognition. Methods Cytokine production by peripheral blood mononuclear cells (PBMCs) from male and female healthy donors after stimulation with Toll-like receptors (TLR) 3, 7, 8, 9 ligands or with viruses (influenza and Herpes-simplex-1) was evaluated. Results Compared to females, PBMCs from males produced not only lower amounts of IFN-α in response to TLR7 ligands but also higher amounts of the immunosuppressive cytokine IL10 after stimulation with TLR8 and TLR9 ligands or viruses. IL10 production after TLR9 ligands or HSV-1 stimulation was significantly related with plasma levels of sex hormones in both groups, whereas no correlation was found in cytokines produced following TLR7 and TLR8 stimulation. Conclusions Given the role of an early production of IL10 by cells of innate immunity in modulating innate and adaptive immune response to viruses, we suggest that sex-related difference in its production following viral nucleic acid stimulation of TLRs may be involved in the sex-related variability in response to viral infections.
Phytomedicine | 2014
Livia Civitelli; Simona Panella; Maria Elena Marcocci; Alberto De Petris; Stefania Garzoli; Federico Pepi; Elisabetta Vavala; Rino Ragno; Lucia Nencioni; Anna Teresa Palamara; Letizia Angiolella
Several essential oils exert in vitro activity against bacteria and viruses and, among these latter, herpes simplex virus type 1 (HSV-1) is known to develop resistance to commonly used antiviral agents. Thus, the effects of the essential oil derived from Mentha suaveolens (EOMS) and its active principle piperitenone oxide (PEO) were tested in in vitro experimental model of infection with HSV-1. The 50% inhibitory concentration (IC50) was determined at 5.1μg/ml and 1.4μg/ml for EOMS and PEO, respectively. Australian tea tree oil (TTO) was used as control, revealing an IC50 of 13.2μg/ml. Moreover, a synergistic action against HSV-1 was observed when each oil was added in combination with acyclovir. In order to find out the mechanism of action, EOMS, PEO and TTO were added to the cells at different times during the virus life-cycle. Results obtained by yield reduction assay indicated that the antiviral activity of both compounds was principally due to an effect after viral adsorption. Indeed, no reduction of virus yield was observed when cells were treated during viral adsorption or pre-treated before viral infection. In particular, PEO exerted a strong inhibitory effect by interfering with a late step of HSV-1 life-cycle. HSV-1 infection is known to induce a pro-oxidative state with depletion of the main intracellular antioxidant glutathione and this redox change in the cell is important for viral replication. Interestingly, the treatment with PEO corrected this deficit, thus suggesting that the compound could interfere with some redox-sensitive cellular pathways exploited for viral replication. Overall our data suggest that both EOMS and PEO could be considered good candidates for novel anti-HSV-1 strategies, and need further exploration to better characterize the targets underlying their inhibition.
Journal of NeuroVirology | 2015
Livia Civitelli; Maria Elena Marcocci; Ignacio Celestino; Roberto Piacentini; Enrico Garaci; Claudio Grassi; Giovanna De Chiara; Anna Teresa Palamara
Several data indicate that neuronal infection with herpes simplex virus type 1 (HSV-1) causes biochemical alterations reminiscent of Alzheimer’s disease (AD) phenotype. They include accumulation of amyloid-β (Aβ), which originates from the cleavage of amyloid precursor protein (APP), and hyperphosphorylation of tau protein, which leads to neurofibrillary tangle deposition. HSV-1 infection triggers APP processing and drives the production of several fragments including APP intracellular domain (AICD) that exerts transactivating properties. Herein, we analyzed the production and intracellular localization of AICD following HSV-1 infection in neurons. We also checked whether AICD induced the transcription of two target genes, neprilysin (nep) and glycogen synthase kinase 3β (gsk3β), whose products play a role in Aβ clearance and tau phosphorylation, respectively. Our data indicate that HSV-1 led to the accumulation and nuclear translocation of AICD in neurons. Moreover, results from chromatin immunoprecipitation assay showed that AICD binds the promoter region of both nep and gsk3β. Time course analysis of NEP and GSK3β expression at both mRNA and protein levels demonstrated that they are differently modulated during infection. NEP expression and enzymatic activity were initially stimulated but, with the progression of infection, they were down-regulated. In contrast, GSK3β expression remained nearly unchanged, but the analysis of its phosphorylation suggests that it was inactivated only at later stages of HSV-1 infection. Thus, our data demonstrate that HSV-1 infection induces early upstream events in the cell that may eventually lead to Aβ deposition and tau hyperphosphorylation and further suggest HSV-1 as a possible risk factor for AD.
Clinical Neurophysiology | 2011
Roberto Piacentini; Cristian Ripoli; Livia Civitelli; Maria Elena Marcocci; G. De Chiara; Anna Teresa Palamara; Claudio Grassi
caudate-putamen (CPU), subthalamic nucleus (STN) and susbstantia nigra pars reticulate (SNr) in 15 awake rats before and after the administration of apomorphine (5 mg/kg) and haloperidol (1 mg/kg). In basal condition, the phase of the delta band (2.5 Hz) entrained the amplitudes of the gamma (50 & 80 Hz) and high frequency oscillations (HFO, 150 Hz) bands. In the motor cortex, the high gamma (80 Hz) and the HFO bands were significantly modulated by the delta activity. In contrast, in the basal ganglia nuclei the most strongly modulated band was the low gamma band (50 Hz), while the high gamma showed a lesser modulation and the HFO band was only modulated in the CPU. Apomorphine injection induced a frequency increase in the modulating activity into the theta range (7.5 Hz) with the modulated amplitude mainly in the high gamma band for the four nuclei. On the other hand, the effect of haloperidol over the frequency of the modulating activity was the opposite, a reduction of the phase frequency (1.75 Hz), with a strengthening of the modulation in the high gamma band. Delta-theta to gamma-HFO cross-frequency coupling occurs in the rat motor circuit. The frequency and magnitude of these phase-to-amplitude interactions are modulated by dopamine agonist and antagonist drugs. This work was supported by the UTE proyect CIMA and by grants from the Fondo de Investigaciones Sanitarias (PI 07/0034) and the Ministerio de Ciencia e Innovación (BFU201
NATURAL 1 | 2015
Stefania Garzoli; Letizia Angiolella; Marisa Colone; Luisa Paris; Annarita Stringaro; Elisabetta Vavala; Livia Civitelli