Cristian Varela
Australian Wine Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristian Varela.
Applied Microbiology and Biotechnology | 2007
Mar Vilanova; Maurizio Ugliano; Cristian Varela; Tracey Siebert; Isak S. Pretorius; Paul A. Henschke
Surveys conducted worldwide have shown that a significant proportion of grape musts are suboptimal for yeast nutrients, especially assimilable nitrogen. Nitrogen deficiencies are linked to slow and stuck fermentations and sulphidic off-flavour formation. Nitrogen supplementation of grape musts has become common practice; however, almost no information is available on the effects of nitrogen supplementation on wine flavour. In this study, the effect of ammonium supplementation of a synthetic medium over a wide range of nitrogen values on the production of volatile and non-volatile compounds by two high-nitrogen-demand wine fermentation strains of Saccharomyces cerevisiae was determined. To facilitate this investigation, a simplified chemically defined medium that resembles the nutrient composition of grape juice was used. Analysis of variance revealed that ammonium supplementation had significant effects on the concentration of residual sugar, L-malic acid, acetic acid and glycerol but not the ethanol concentration. While choice of yeast strain significantly affected half of the aroma compounds measured, nitrogen concentrations affected 23 compounds, including medium-chain alcohols and fatty acids and their esters. Principal component analysis showed that branched-chain fatty acids and their esters were associated with low nitrogen concentrations, whereas medium-chain fatty esters and acetic acid were associated with high nitrogen concentrations.
Applied Microbiology and Biotechnology | 2007
Ana M. Molina; Jan H. Swiegers; Cristian Varela; Isak S. Pretorius; Eduardo Agosin
The yeast Saccharomyces cerevisiae synthesises a variety of volatile aroma compounds during wine fermentation. In this study, the influence of fermentation temperature on (1) the production of yeast-derived aroma compounds and (2) the expression of genes involved in aroma compounds’ metabolism (ADH1, PDC1, BAT1, BAT2, LEU2, ILV2, ATF1, ATF2, EHT1 and IAH1) was assessed, during the fermentation of a defined must at 15 and 28°C. Higher concentrations of compounds related to fresh and fruity aromas were found at 15°C, while higher concentrations of flowery related aroma compounds were found at 28°C. The formation rates of volatile aroma compounds varied according to growth stage. In addition, linear correlations between the increases in concentration of higher alcohol and their corresponding acetates were obtained. Genes presented different expression profiles at both temperatures, except ILV2, and those involved in common pathways were co-expressed (ADH1, PDC1 and BAT2; and ATF1, EHT1 and IAH1). These results demonstrate that the fermentation temperature plays an important role in the wine final aroma profile, and is therefore an important control parameter to fine-tune wine quality during winemaking.
Applied and Environmental Microbiology | 2004
Cristian Varela; Francisco Pizarro; Eduardo Agosin
ABSTRACT Problematic fermentations are common in the wine industry. Assimilable nitrogen deficiency is the most prevalent cause of sluggish fermentations and can reduce fermentation rates significantly. A lack of nitrogen diminishes a yeasts metabolic activity, as well as the biomass yield, although it has not been clear which of these two interdependent factors is more significant in sluggish fermentations. Under winemaking conditions with different initial nitrogen concentrations, metabolic flux analysis was used to isolate the effects. We quantified yeast physiology and identified key metabolic fluxes. We also performed cell concentration experiments to establish how biomass yield affects the fermentation rate. Intracellular analysis showed that trehalose accumulation, which is highly correlated with ethanol production, could be responsible for sustaining cell viability in nitrogen-poor musts independent of the initial assimilable nitrogen content. Other than the higher initial maintenance costs in sluggish fermentations, the main difference between normal and sluggish fermentations was that the metabolic flux distributions in nitrogen-deficient cultures revealed that the specific sugar uptake rate was substantially lower. The results of cell concentration experiments, however, showed that in spite of lower sugar uptake, adding biomass from sluggish cultures not only reduced the time to finish a problematic fermentation but also was less likely to affect the quality of the resulting wine as it did not alter the chemistry of the must.
Applied and Environmental Microbiology | 2014
A. Contreras; C. Hidalgo; Paul A. Henschke; Paul J. Chambers; Chris Curtin; Cristian Varela
ABSTRACT Over recent decades, the average ethanol concentration of wine has increased, largely due to consumer preference for wine styles associated with increased grape maturity; sugar content increases with grape maturity, and this translates into increased alcohol content in wine. However, high ethanol content impacts wine sensory properties, reducing the perceived complexity of flavors and aromas. In addition, for health and economic reasons, the wine sector is actively seeking technologies to facilitate the production of wines with lower ethanol content. Nonconventional yeast species, in particular, non-Saccharomyces yeasts, have shown potential for producing wines with lower alcohol content. These yeast species, which are largely associated with grapes preharvest, are present in the early stages of fermentation but, in general, are not capable of completing alcoholic fermentation. We have evaluated 50 different non-Saccharomyces isolates belonging to 24 different genera for their capacity to produce wine with a lower ethanol concentration when used in sequential inoculation regimes with a Saccharomyces cerevisiae wine strain. A sequential inoculation of Metschnikowia pulcherrima AWRI1149 followed by an S. cerevisiae wine strain was best able to produce wine with an ethanol concentration lower than that achieved with the single-inoculum, wine yeast control. Sequential fermentations utilizing AWRI1149 produced wines with 0.9% (vol/vol) and 1.6% (vol/vol) (corresponding to 7.1 g/liter and 12.6 g/liter, respectively) lower ethanol concentrations in Chardonnay and Shiraz wines, respectively. In Chardonnay wine, the total concentration of esters and higher alcohols was higher for wines generated from sequential inoculations, whereas the total concentration of volatile acids was significantly lower. In sequentially inoculated Shiraz wines, the total concentration of higher alcohols was higher and the total concentration of volatile acids was reduced compared with those in control S. cerevisiae wines, whereas the total concentrations of esters were not significantly different.
Food Chemistry | 2011
Diego Torrea; Cristian Varela; Maurizio Ugliano; Carmen Ancín-Azpilicueta; I. Leigh Francis; Paul A. Henschke
Inorganic nitrogen salts, and to a growing extent organic nitrogen preparations, are widely used to ameliorate a nitrogen deficiency in wine fermentation, but the impact of nitrogen supplementation on perceived wine sensory profile is essentially unknown. Supplementation of a low nitrogen Chardonnay grape juice with either ammonium nitrogen or combined amino acid and ammonium nitrogen showed that the type of nitrogen and concentration in the range 160-480mgN/l had a substantial impact on the formation of yeast volatile compounds and perceived wine aroma. Addition of amino acid and ammonium nitrogen increased both acetate and medium chain fatty acid esters to a greater extent and decreased higher alcohols to a lesser extent than ammonium nitrogen alone whereas ammonium nitrogen substantially increased ethyl acetate and acetic acid. Low nitrogen wines were rated relatively low in floral/fruity aroma descriptors, while moderate nitrogen wines showed a good balance between desirable and less desirable attributes, whereas high nitrogen produced either an acetic/solvent character or highest ratings for floral/fruity attributes, depending on nitrogen type. These results show that amount and type of nitrogen supplement can substantially modulate Chardonnay wine volatiles composition and perceived aroma.
Food Chemistry | 2013
Keren A. Bindon; Cristian Varela; James A. Kennedy; Helen Holt; Markus Herderich
The study aimed to quantify the effects of grape maturity on wine alcohol, phenolics, flavour compounds and polysaccharides in Vitis vinifera L. cv Cabernet Sauvignon. Grapes were harvested at juice soluble solids from 20 to 26 °Brix which corresponded to a range of wine ethanol concentrations between 12% and 15.5%. Grape anthocyanin and skin tannin concentration increased as ripening progressed, while seed tannin declined. In the corresponding wines, monomeric anthocyanin and wine tannin concentration increased with harvest date, consistent with an enhanced extraction of skin-derived phenolics. In wines, there was an observed increase in yeast-derived metabolites, including volatile esters, dimethyl sulfide, glycerol and mannoproteins with harvest date. Wine volatiles which were significantly influenced by harvest date were isobutyl methoxypyrazine, C(6) alcohols and hexyl acetate, all of which decreased as ripening progressed. The implications of harvest date for wine composition is discussed in terms of both grape composition and yeast metabolism.
Applied Microbiology and Biotechnology | 2012
Antonio G. Cordente; Chris Curtin; Cristian Varela; Isak S. Pretorius
The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of ‘flavour phenotypes’ that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.
Applied and Environmental Microbiology | 2012
Cristian Varela; Dariusz R. Kutyna; Mark Solomon; C. A. Black; Anthony R. Borneman; Paul A. Henschke; Isak S. Pretorius; Paul J. Chambers
ABSTRACT Saccharomyces cerevisiae has evolved a highly efficient strategy for energy generation which maximizes ATP energy production from sugar. This adaptation enables efficient energy generation under anaerobic conditions and limits competition from other microorganisms by producing toxic metabolites, such as ethanol and CO2. Yeast fermentative and flavor capacity forms the biotechnological basis of a wide range of alcohol-containing beverages. Largely as a result of consumer demand for improved flavor, the alcohol content of some beverages like wine has increased. However, a global trend has recently emerged toward lowering the ethanol content of alcoholic beverages. One option for decreasing ethanol concentration is to use yeast strains able to divert some carbon away from ethanol production. In the case of wine, we have generated and evaluated a large number of gene modifications that were predicted, or known, to impact ethanol formation. Using the same yeast genetic background, 41 modifications were assessed. Enhancing glycerol production by increasing expression of the glyceraldehyde-3-phosphate dehydrogenase gene, GPD1, was the most efficient strategy to lower ethanol concentration. However, additional modifications were needed to avoid negatively affecting wine quality. Two strains carrying several stable, chromosomally integrated modifications showed significantly lower ethanol production in fermenting grape juice. Strain AWRI2531 was able to decrease ethanol concentrations from 15.6% (vol/vol) to 13.2% (vol/vol), whereas AWRI2532 lowered ethanol content from 15.6% (vol/vol) to 12% (vol/vol) in both Chardonnay and Cabernet Sauvignon juices. Both strains, however, produced high concentrations of acetaldehyde and acetoin, which negatively affect wine flavor. Further modifications of these strains allowed reduction of these metabolites.
International Journal of Food Microbiology | 2015
A. Contreras; C. Hidalgo; S. Schmidt; Paul A. Henschke; Chris Curtin; Cristian Varela
High alcohol concentrations reduce the complexity of wine sensory properties. In addition, health and economic drivers have the wine industry actively seeking technologies that facilitate the production of wines with lower alcohol content. One of the simplest approaches to achieve this aim would be the use of wine yeast strains which are less efficient at transforming grape sugars into ethanol, however commercially available wine yeasts produce very similar ethanol yields. Non-conventional yeast, in particular non-Saccharomyces species, have shown potential for producing wines with lower alcohol content. These yeasts are naturally present in the early stages of fermentation but in general are not capable of completing alcoholic fermentation. We have evaluated 48 non-Saccharomyces isolates to identify strains that, with limited aeration and in sequential inoculation regimes with S. cerevisiae, could be used for the production of wine with lower ethanol concentration. Two of these, Torulaspora delbrueckii AWRI1152 and Zygosaccharomyces bailii AWRI1578, enabled the production of wine with reduced ethanol concentration under limited aerobic conditions. Depending on the aeration regime T. delbrueckii AWRI1152 and Z. bailii AWRI1578 showed a reduction in ethanol concentration of 1.5% (v/v) and 2.0% (v/v) respectively, compared to the S. cerevisiae anaerobic control.
Applied Microbiology and Biotechnology | 2012
Dariusz R. Kutyna; Cristian Varela; Grant A. Stanley; Anthony R. Borneman; Paul A. Henschke; Paul J. Chambers
The development of new wine yeast strains with improved characteristics is critical in the highly competitive wine market, which faces the demand of ever-changing consumer preferences. Although new strains can be constructed using recombinant DNA technologies, consumer concerns about genetically modified (GM) organisms strongly limit their use in food and beverage production. We have applied a non-GM approach, adaptive evolution with sulfite at alkaline pH as a selective agent, to create a stable yeast strain with enhanced glycerol production; a desirable characteristic for wine palate. A mutant isolated using this approach produced 41% more glycerol than the parental strain it was derived from, and had enhanced sulfite tolerance. Backcrossing to produce heterozygous diploids revealed that the high-glycerol phenotype is recessive, while tolerance to sulfite was partially dominant, and these traits, at least in part, segregated from each other. This work demonstrates the potential of adaptive evolution for development of novel non-GM yeast strains, and highlights the complexity of adaptive responses to sulfite selection.