Cristiana C. Garcia
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristiana C. Garcia.
Journal of Immunology | 2008
Mariola Kurowska-Stolarska; Pete Kewin; Grace Murphy; Remo Castro Russo; Bartosz Stolarski; Cristiana C. Garcia; Mousa Komai-Koma; Nick Pitman; Yubin Li; Andrew N. J. McKenzie; Mauro M. Teixeira; Foo Y. Liew; Damo Xu
Type 2 cytokines (IL-4, IL-5, and IL-13) play a pivotal role in helminthic infection and allergic disorders. CD4(+) T cells which produce type 2 cytokines can be generated via IL-4-dependent and -independent pathways. Although the IL-4-dependent pathway is well documented, factors that drive IL-4-independent Th2 cell differentiation remain obscure. We report here that the new cytokine IL-33, in the presence of Ag, polarizes murine and human naive CD4(+) T cells into a population of T cells which produce mainly IL-5 but not IL-4. This polarization requires IL-1R-related molecule and MyD88 but not IL-4 or STAT6. The IL-33-induced T cell differentiation is also dependent on the phosphorylation of MAPKs and NF-kappaB but not the induction of GATA3 or T-bet. In vivo, ST2(-/-) mice developed attenuated airway inflammation and IL-5 production in a murine model of asthma. Conversely, IL-33 administration induced the IL-5-producing T cells and exacerbated allergen-induced airway inflammation in wild-type as well as IL-4(-/-) mice. Finally, adoptive transfer of IL-33-polarized IL-5(+)IL-4(-)T cells triggered airway inflammation in naive IL-4(-/-) mice. Thus, we demonstrate here that, in the presence of Ag, IL-33 induces IL-5-producing T cells and promotes airway inflammation independent of IL-4.
American Journal of Respiratory Cell and Molecular Biology | 2009
Remo Castro Russo; Rodrigo Guabiraba; Cristiana C. Garcia; Lucíola S. Barcelos; Ester Roffê; Adriano L.S. Souza; Flávio A. Amaral; Daniel Cisalpino; Geovanni Dantas Cassali; Andrea Doni; Riccardo Bertini; Mauro M. Teixeira
Pulmonary fibrosis is characterized by chronic inflammation and excessive collagen deposition. Neutrophils are thought to be involved in the pathogenesis of lung fibrosis. We hypothesized that CXCR2-mediated neutrophil recruitment is essential for the cascade of events leading to bleomycin-induced pulmonary fibrosis. CXCL1/KC was detected as early as 6 hours after bleomycin instillation and returned to basal levels after Day 8. Neutrophils were detected in bronchoalveolar lavage and interstitium from 12 hours and peaked at Day 8 after instillation. Treatment with the CXCR2 receptor antagonist, DF2162, reduced airway neutrophil transmigration but led to an increase of neutrophils in lung parenchyma. There was a significant reduction in IL-13, IL-10, CCL5/RANTES, and active transforming growth factor (TGF)-beta(1) levels, but not on IFN-gamma and total TGF-beta(1,) and enhanced granulocyte macrophage-colony-stimulating factor production in DF2162-treated animals. Notably, treatment with the CXCR2 antagonist led to an improvement of the lung pathology and reduced collagen deposition. Using a therapeutic schedule, DF2162 administered from Days 8 to 16 after bleomycin reduced pulmonary fibrosis and levels of active TGF-beta(1) and IL-13. DF2162 treatment reduced bleomycin-induced expression of von Willebrand Factor, a marker of angiogenesis, in the lung. In vitro, DF2162 reduced the angiogenic activity of IL-8 on human umbilical vein endothelial cells. In conclusion, we show that CXCR2 plays an important role in mediating fibrosis after bleomycin instillation. The compound blocks angiogenesis and the production of pro-angiogenic cytokines, and decreases IL-8-induced endothelial cell activation. An effect on neutrophils does not appear to account for the major effects of the blockade of CXCR2 in the system.
Expert Review of Clinical Immunology | 2014
Remo Castro Russo; Cristiana C. Garcia; Mauro M. Teixeira; Flávio A. Amaral
Chemokines are small proteins that control several tissue functions, including cell recruitment and activation under homeostatic and inflammatory conditions. CXCL8 (interleukin-8) is a member of the chemokine family that acts on CXCR1 and CXCR2 receptors. CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, and CXCL7 are also ELR+ chemokine members that bind to these receptors, especially CXCR2. The majority of studies on the biology of CXCL8 and their receptors have been performed in polymorphonuclear leukocytes. However, many other cells express CXCR1/CXCR2, including epithelial, endothelial, fibroblasts and neurons, contributing to the biological effects of CXCL8. There is substantial amount of experimental data suggesting that CXCL8 and receptors contribute to elimination of pathogens, but may also contribute significantly to disease-associated processes, including tissue injury, fibrosis, angiogenesis and tumorigenesis. Here, we discuss the biology of CXCL8 family and the potential therapeutic use of antagonists or blockers of these molecules in the context of organ-specific diseases.
Journal of Leukocyte Biology | 2010
Lirlândia P. Sousa; Fernando Lopes; Douglas M. Silva; Luciana P. Tavares; Angélica T. Vieira; Bárbara M. Rezende; Aline F. Carmo; Remo Castro Russo; Cristiana C. Garcia; Cláudio A. Bonjardim; Ana L. Alessandri; Adriano G. Rossi; Vanessa Pinho; Mauro M. Teixeira
PDE4 inhibitors are effective anti‐inflammatory drugs whose effects and putative mechanisms on resolution of inflammation and neutrophil apoptosis in vivo are still unclear. Here, we examined the effects of specific PDE4 inhibition on the resolution of neutrophilic inflammation in the pleural cavity of LPS‐challenged mice. LPS induced neutrophil recruitment that was increased at 4 h, peaked at 8–24 h, and declined thereafter. Such an event in the pleural cavity was preceded by increased levels of KC and MIP‐2 at 1 and 2 h. Treatment with the PDE4 inhibitor rolipram, at 4 h after LPS administration, decreased the number of neutrophils and increased the percentage of apoptotic cells in the pleural cavity in a PKA‐dependent manner. Conversely, delayed treatment with a CXCR2 antagonist failed to prevent neutrophil recruitment. Forskolin and db‐cAMP also decreased the number of neutrophils and increased apoptosis in the pleural cavity. The proapoptotic effect of rolipram was associated with decreased levels of the prosurvival protein Mcl‐1 and increased caspase‐3 cleavage. The pan‐caspase inhibitor zVAD‐fmk prevented rolipram‐induced resolution of inflammation. LPS resulted in a time‐dependent activation of Akt, which was blocked by treatment with rolipram or PI3K and Akt inhibitors, and PI3K and Akt inhibitors also enhanced apoptosis and promoted neutrophil clearance. Although LPS induced NF‐κB activation, which was blocked by rolipram, NF‐κB inhibitors did not promote resolution of neutrophil accumulation in this model. In conclusion, our data show that PDE4 inhibition resolves neutrophilic inflammation by promoting caspase‐dependent apoptosis of inflammatory cells by targeting a PKA/PI3K/Akt‐dependent survival pathway.
Arthritis & Rheumatism | 2015
Angélica T. Vieira; Laurence Macia; Izabela Galvão; Flaviano S. Martins; Maria Cecília C. Canesso; Flávio A. Amaral; Cristiana C. Garcia; Kendle M. Maslowski; Ellen De Leon; Doris Shim; Jacques Robert Nicoli; Jacquie L. Harper; Mauro M. Teixeira; Charles R. Mackay
Host–microbial interactions are central in health and disease. Monosodium urate monohydrate (MSU) crystals cause gout by activating the NLRP3 inflammasome, leading to interleukin‐1β (IL‐1β) production and neutrophil recruitment. This study was undertaken to investigate the relevance of gut microbiota, acetate, and the metabolite‐sensing receptor GPR43 in regulating inflammation in a murine model of gout.
PLOS Pathogens | 2010
Cristiana C. Garcia; Remo Castro Russo; Rodrigo Guabiraba; Caio T. Fagundes; Rafael B. Polidoro; Luciana P. Tavares; Ana Paula C. Salgado; Geovanni Dantas Cassali; Lirlândia P. Sousa; Alexandre V. Machado; Mauro M. Teixeira
Influenza A virus causes annual epidemics which affect millions of people worldwide. A recent Influenza pandemic brought new awareness over the health impact of the disease. It is thought that a severe inflammatory response against the virus contributes to disease severity and death. Therefore, modulating the effects of inflammatory mediators may represent a new therapy against Influenza infection. Platelet activating factor (PAF) receptor (PAFR) deficient mice were used to evaluate the role of the gene in a model of experimental infection with Influenza A/WSN/33 H1N1 or a reassortant Influenza A H3N1 subtype. The following parameters were evaluated: lethality, cell recruitment to the airways, lung pathology, viral titers and cytokine levels in lungs. The PAFR antagonist PCA4248 was also used after the onset of flu symptoms. Absence or antagonism of PAFR caused significant protection against flu-associated lethality and lung injury. Protection was correlated with decreased neutrophil recruitment, lung edema, vascular permeability and injury. There was no increase of viral load and greater recruitment of NK1.1+ cells. Antibody responses were similar in WT and PAFR-deficient mice and animals were protected from re-infection. Influenza infection induces the enzyme that synthesizes PAF, lyso-PAF acetyltransferase, an effect linked to activation of TLR7/8. Therefore, it is suggested that PAFR is a disease-associated gene and plays an important role in driving neutrophil influx and lung damage after infection of mice with two subtypes of Influenza A. Further studies should investigate whether targeting PAFR may be useful to reduce lung pathology associated with Influenza A virus infection in humans.
PLOS ONE | 2013
Cristiana C. Garcia; Wynne Weston-Davies; Remo Castro Russo; Luciana P. Tavares; Milene Alvarenga Rachid; José C. Alves-Filho; Alexandre V. Machado; Bernhard Ryffel; Miles A. Nunn; Mauro M. Teixeira
Influenza virus A (IAV) causes annual epidemics and intermittent pandemics that affect millions of people worldwide. Potent inflammatory responses are commonly associated with severe cases of IAV infection. The complement system, an important mechanism of innate and humoral immune responses to infections, is activated during primary IAV infection and mediates, in association with natural IgM, viral neutralization by virion aggregation and coating of viral hemmagglutinin. Increased levels of the anaphylatoxin C5a were found in patients fatally infected with the most recent H1N1 pandemic virus. In this study, our aim was to evaluate whether targeting C5 activation alters inflammatory lung injury and viral load in a murine model of IAV infection. To address this question C57Bl/6j mice were infected intranasally with 104 PFU of the mouse adapted Influenza A virus A/WSN/33 (H1N1) or inoculated with PBS (Mock). We demonstrated that C5a is increased in bronchoalveolar lavage fluid (BALF) upon experimental IAV infection. To evaluate the role of C5, we used OmCI, a potent arthropod-derived inhibitor of C5 activation that binds to C5 and prevents release of C5a by complement. OmCI was given daily by intraperitoneal injection from the day of IAV infection until day 5. Treatment with OmCI only partially reduced C5a levels in BALF. However, there was significant inhibition of neutrophil and macrophage infiltration in the airways, Neutrophil Extracellular Traps (NETs) formation, death of leukocytes, lung epithelial injury and overall lung damage induced by the infection. There was no effect on viral load. Taken together, these data suggest that targeting C5 activation with OmCI during IAV infection could be a promising approach to reduce excessive inflammatory reactions associated with the severe forms of IAV infections.
PLOS Pathogens | 2012
Mengyao Liu; Hui Zhu; Jinquan Li; Cristiana C. Garcia; Wenchao Feng; Liliya N. Kirpotina; Jonathan K. Hilmer; Luciana P. Tavares; Arthur W. Layton; Mark T. Quinn; Brian Bothner; Mauro M. Teixeira; Benfang Lei
The innate immune system is the first line of host defense against invading organisms. Thus, pathogens have developed virulence mechanisms to evade the innate immune system. Here, we report a novel means for inhibition of neutrophil recruitment by Group A Streptococcus (GAS). Deletion of the secreted esterase gene (designated sse) in M1T1 GAS strains with (MGAS5005) and without (MGAS2221) a null covS mutation enhances neutrophil ingress to infection sites in the skin of mice. In trans expression of SsE in MGAS2221 reduces neutrophil recruitment and enhances skin invasion. The sse deletion mutant of MGAS5005 (Δsse MGAS5005) is more efficiently cleared from skin than the parent strain. SsE hydrolyzes the sn-2 ester bond of platelet-activating factor (PAF), converting biologically active PAF into inactive lyso-PAF. KM and k cat of SsE for hydrolysis of 2-thio-PAF were similar to those of the human plasma PAF acetylhydrolase. Treatment of PAF with SsE abolishes the capacity of PAF to induce activation and chemotaxis of human neutrophils. More importantly, PAF receptor-deficient mice significantly reduce neutrophil infiltration to the site of Δsse MGAS5005 infection. These findings identify the first secreted PAF acetylhydrolase of bacterial pathogens and support a novel GAS evasion mechanism that reduces phagocyte recruitment to sites of infection by inactivating PAF, providing a new paradigm for bacterial evasion of neutrophil responses.
American Journal of Respiratory Cell and Molecular Biology | 2011
Remo Castro Russo; Ana L. Alessandri; Cristiana C. Garcia; Barbara F. Cordeiro; Vanessa Pinho; Geovanni Dantas Cassali; Amanda E. I. Proudfoot; Mauro M. Teixeira
CC chemokines play an important role in the pathogenesis of idiopathic pulmonary fibrosis. Few studies have evaluated the efficacy of therapeutically targeting CC chemokines and their receptors during interstitial lung diseases. In the present study, the therapeutic effects of Evasin-1, a tick-derived chemokine-binding protein that has high affinity for CCL3/microphage inflammatory protein (MIP)-1α, was investigated in a murine model of bleomycin-induced lung fibrosis. CCL3/MIP-1α concentrations in lung homogenates increased significantly with time after bleomycin challenge, and this was accompanied by increased number of leukocytes and elevated levels of CCL2/monocyte chemoattractant protein (MCP)-1, CCL5/regulated upon activation, normal T cell expressed and secreted, TNF-α and transforming growth factor-β(1), and pulmonary fibrosis. Administration of evasin-1 on a preventive (from the day of bleomycin administration) or therapeutic (from Day 8 after bleomycin) schedule decreased number of leukocytes in the lung, reduced levels of TNF-α and transforming growth factor-β(1), and attenuated lung fibrosis. These protective effects were similar to those observed in CCL3/MIP-1α-deficient mice. In conclusion, targeting CCL3/MIP-1α by treatment with evasin-1 is beneficial in the context of bleomycin-induced lung injury, even when treatment is started after the fibrogenic insult. Mechanistically, evasin-1 treatment was associated with decreased recruitment of leukocytes and production of fibrogenic cytokines. Modulation of CCL3/MIP-1α function by evasin-1 could be useful for the treatment of idiopathic pulmonary fibrosis.
Journal of Immunology | 2015
Juliana P. Vago; Luciana P. Tavares; Cristiana C. Garcia; Kátia M. Lima; Luiza Oliveira Perucci; Érica Leandro Marciano Vieira; Camila R. C. Nogueira; Frederico M. Soriani; Joilson O. Martins; Patrícia M.R. e Silva; Karina Braga Gomes; Vanessa Pinho; Stefano Bruscoli; Carlo Riccardi; Elaine Beaulieu; Eric Francis Morand; Mauro M. Teixeira; Lirlândia P. Sousa
Glucocorticoid (GC)-induced leucine zipper (GILZ) has been shown to mediate or mimic several actions of GC. This study assessed the role of GILZ in self-resolving and GC-induced resolution of neutrophilic inflammation induced by LPS in mice. GILZ expression was increased during the resolution phase of LPS-induced pleurisy, especially in macrophages with resolving phenotypes. Pretreating LPS-injected mice with trans-activator of transcription peptide (TAT)–GILZ, a cell-permeable GILZ fusion protein, shortened resolution intervals and improved resolution indices. Therapeutic administration of TAT-GILZ induced inflammation resolution, decreased cytokine levels, and promoted caspase-dependent neutrophil apoptosis. TAT-GILZ also modulated the activation of the survival-controlling proteins ERK1/2, NF-κB and Mcl-1. GILZ deficiency was associated with an early increase of annexin A1 (AnxA1) and did not modify the course of neutrophil influx induced by LPS. Dexamethasone treatment resolved inflammation and induced GILZ expression that was dependent on AnxA1. Dexamethasone-induced resolution was not altered in GILZ−/− mice due to compensatory expression and action of AnxA1. Our results show that therapeutic administration of GILZ efficiently induces a proapoptotic program that promotes resolution of neutrophilic inflammation induced by LPS. Alternatively, a lack of endogenous GILZ during the resolution of inflammation is compensated by AnxA1 overexpression.