Cristiana T. Argueso
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristiana T. Argueso.
The Plant Cell | 2006
Claire E. Hutchison; Jie Li; Cristiana T. Argueso; Mónica Benito González; Eurie Lee; Michael W. Lewis; Bridey B. Maxwell; Tony D. Perdue; G. Eric Schaller; Jose M. Alonso; Joseph R. Ecker; Joseph J. Kieber
Arabidopsis thaliana histidine phosphotransfer proteins (AHPs) are similar to bacterial and yeast histidine phosphotransfer proteins (HPts), which act in multistep phosphorelay signaling pathways. A phosphorelay pathway is the current model for cytokinin signaling. To assess the role of AHPs in cytokinin signaling, we isolated T-DNA insertions in the five AHP genes that are predicted to encode functional HPts and constructed multiple insertion mutants, including an ahp1,2,3,4,5 quintuple mutant. Single ahp mutants were indistinguishable from wild-type seedlings in cytokinin response assays. However, various higher-order mutants displayed reduced sensitivity to cytokinin in diverse cytokinin assays, indicating both a positive role for AHPs in cytokinin signaling and functional overlap among the AHPs. In contrast with the other four AHPs, AHP4 may play a negative role in some cytokinin responses. The quintuple ahp mutant showed various abnormalities in growth and development, including reduced fertility, increased seed size, reduced vascular development, and a shortened primary root. These data indicate that most of the AHPs are redundant, positive regulators of cytokinin signaling and affect multiple aspects of plant development.
Plant Cell and Environment | 2009
Cristiana T. Argueso; Fernando J. Ferreira; Joseph J. Kieber
Cytokinins were discovered in the 1950s by their ability to promote cell division in cultured plant cells. Recently, there have been significant breakthroughs in our understanding of the biosynthesis, metabolism, perception and signal transduction of this phytohormone. These advances, coupled with physiological and other approaches, have enabled remarkable progress to be made in our understanding of the interactions between cytokinin function and environmental inputs. In this review, we first highlight the most recent advances in our understanding of cytokinin biosynthesis, metabolism and signalling. We then discuss how various environmental signals interact with these pathways to modulate plant growth, development and physiology.
Journal of Plant Growth Regulation | 2007
Cristiana T. Argueso; Maureen Hansen; Joseph J. Kieber
The biosynthesis of the gaseous phytohormone ethylene is a highly regulated process. A major point of regulation occurs at the generally rate-limiting step in biosynthesis, catalyzed by the enzyme ACC synthase (ACS). ACS is encoded by a multigene family, and different members show distinct patterns of expression during growth and development, and in response to various external cues. In addition to this transcriptional control, the stability of the ACS protein is also highly regulated. Here we review these two distinct regulatory inputs that control the spatial and temporal patterns of ethylene biosynthesis.
PLOS Genetics | 2012
Cristiana T. Argueso; Fernando J. Ferreira; Petra Epple; Jennifer P.C. To; Claire E. Hutchison; G. Eric Schaller; Jeffery L. Dangl; Joseph J. Kieber
Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens.
Current Opinion in Plant Biology | 2010
Cristiana T. Argueso; Tracy Raines; Joseph J. Kieber
The cytokinin signaling pathway consists of a phosphorelay mechanism that is initiated by binding of cytokinin to histidine kinase receptors and culminates with the transcription of cytokinin-responsive genes in the nucleus. Type-B response regulators (ARR) encode transcription factors that act as major players in the transcriptional activation of cytokinin-responsive genes, among which are many transcription factors. In this review, we highlight the transcriptional networks regulated by cytokinin that have been identified and their roles in the regulation of a subset of the many developmental and physiological processes regulated by this plant hormone.
Plant Physiology | 2006
Gloria K. Muday; Shari R. Brady; Cristiana T. Argueso; Jean Deruère; Joseph J. Kieber; Alison DeLong
The roots curl in naphthylphthalamic acid1 (rcn1) mutant of Arabidopsis (Arabidopsis thaliana) has altered auxin transport, gravitropism, and ethylene response, providing an opportunity to analyze the interplay between ethylene and auxin in control of seedling growth. Roots of rcn1 seedlings were previously shown to have altered auxin transport, growth, and gravitropism, while rcn1 hypocotyl elongation exhibited enhanced ethylene response. We have characterized auxin transport and gravitropism phenotypes of rcn1 hypocotyls and have explored the roles of auxin and ethylene in controlling these phenotypes. As in roots, auxin transport is increased in etiolated rcn1 hypocotyls. Hypocotyl gravity response is accelerated, although overall elongation is reduced, in etiolated rcn1 hypocotyls. Etiolated, but not light grown, rcn1 seedlings also overproduce ethylene, and mutations conferring ethylene insensitivity restore normal hypocotyl elongation to rcn1. Auxin transport is unaffected by treatment with the ethylene precursor 1-aminocyclopropane carboxylic acid in etiolated hypocotyls of wild-type and rcn1 seedlings. Surprisingly, the ethylene insensitive2-1 (ein2-1) and ein2-5 mutations dramatically reduce gravitropic bending in hypocotyls. However, the ethylene resistant1-3 (etr1-3) mutation does not significantly affect hypocotyl gravity response. Furthermore, neither the etr1 nor the ein2 mutation abrogates the accelerated gravitropism observed in rcn1 hypocotyls, indicating that both wild-type gravity response and enhanced gravity response in rcn1 do not require an intact ethylene-signaling pathway. We therefore conclude that the RCN1 protein affects overall hypocotyl elongation via negative regulation of ethylene synthesis in etiolated seedlings, and that RCN1 and EIN2 modulate hypocotyl gravitropism and ethylene responses through independent pathways.
Annual Review of Phytopathology | 2017
Matthias L. Berens; Hannah M. Berry; Akira Mine; Cristiana T. Argueso; Kenichi Tsuda
Studies with model plants such as Arabidopsis thaliana have revealed that phytohormones are central regulators of plant defense. The intricate network of phytohormone signaling pathways enables plants to activate appropriate and effective defense responses against pathogens as well as to balance defense and growth. The timing of the evolution of most phytohormone signaling pathways seems to coincide with the colonization of land, a likely requirement for plant adaptations to the more variable terrestrial environments, which included the presence of pathogens. In this review, we explore the evolution of defense hormone signaling networks by combining the model plant-based knowledge about molecular components mediating phytohormone signaling and cross talk with available genome information of other plant species. We highlight conserved hubs in hormone cross talk and discuss evolutionary advantages of defense hormone cross talk. Finally, we examine possibilities of engineering hormone cross talk for improvement of plant fitness and crop production.
Plant Journal | 2016
Tracy Raines; Carly Shanks; Chia-Yi Cheng; Duncan McPherson; Cristiana T. Argueso; Hyo Jung Kim; José Manuel Franco-Zorrilla; Irene López-Vidriero; Roberto Solano; Radomíra Vaňková; G. Eric Schaller; Joseph J. Kieber
The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.
Seminars in Cell & Developmental Biology | 2016
Alexandra M. Shigenaga; Cristiana T. Argueso
Plant hormones are essential regulators of plant growth and immunity. In the last few decades, a vast amount of information has been obtained detailing the role of different plant hormones in immunity, and how they work together to ultimately shape the outcomes of plant pathogen interactions. Here we provide an overview on the roles of the main classes of plant hormones in the regulation of plant immunity, highlighting their metabolic and signaling pathways and how plants and pathogens utilize these pathways to activate or suppress defence.
Cell | 2017
Jan E. Leach; Lindsay R. Triplett; Cristiana T. Argueso; Pankaj Trivedi
The phytobiome is composed of plants, their environment, and diverse interacting microscopic and macroscopic organisms, which together influence plant health and productivity. These organisms form complex networks that are established and regulated through nutrient cycling, competition, antagonism, and chemical communication mediated by a diverse array of signaling molecules. Integration of knowledge of signaling mechanisms with that of phytobiome members and their networks will lead to a new understanding of the fate and significance of these signals at the ecosystem level. Such an understanding could lead to new biological, chemical, and breeding strategies to improve crop health and productivity.