Joseph J. Kieber
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joseph J. Kieber.
Cell | 1993
Joseph J. Kieber; Madge Rothenberg; Gregg Roman; Kenneth A. Feldmann; Joseph R. Ecker
We isolated a recessive Arabidopsis mutant, ctr1, that constitutively exhibits seedling and adult phenotypes observed in plants treated with the plant hormone ethylene. The ctr1 adult morphology can be phenocopied by treatment of wild-type plants with exogenous ethylene and is due, at least in part, to inhibition of cell elongation. Seedlings and adult ctr1 plants show constitutive expression of ethylene-regulated genes. The epistasis of ctr1 and other ethylene response mutants has defined the position of CTR1 in the ethylene signal transduction pathway. The CTR1 gene has been cloned, and the DNA sequences of four mutant alleles were determined. The gene encodes a putative serine/threonine protein kinase that is most closely related to the Raf protein kinase family.
Nature | 2005
Andrea Leibfried; Jennifer P.C. To; Wolfgang Busch; Sandra Stehling; Andreas Kehle; Monika Demar; Joseph J. Kieber; Jan U. Lohmann
Plants continuously maintain pools of totipotent stem cells in their apical meristems from which elaborate root and shoot systems are produced. In Arabidopsis thaliana, stem cell fate in the shoot apical meristem is controlled by a regulatory network that includes the CLAVATA (CLV) ligand–receptor system and the homeodomain protein WUSCHEL (WUS). Phytohormones such as auxin and cytokinin are also important for meristem regulation. Here we show a mechanistic link between the CLV/WUS network and hormonal control. WUS, a positive regulator of stem cells, directly represses the transcription of several two-component ARABIDOPSIS RESPONSE REGULATOR genes (ARR5, ARR6, ARR7 and ARR15), which act in the negative-feedback loop of cytokinin signalling. These data indicate that ARR genes might negatively influence meristem size and that their repression by WUS might be necessary for proper meristem function. Consistent with this hypothesis is our observation that a mutant ARR7 allele, which mimics the active, phosphorylated form, causes the formation of aberrant shoot apical meristems. Conversely, a loss-of-function mutation in a maize ARR homologue was recently shown to cause enlarged meristems.
The Plant Cell | 2004
Jennifer P.C. To; Georg Haberer; Fernando J. Ferreira; Jean Deruère; Michael G. Mason; G. Eric Schaller; Jose M. Alonso; Joseph R. Ecker; Joseph J. Kieber
Type-A Arabidopsis (Arabidopsis thaliana) response regulators (ARRs) are a family of 10 genes that are rapidly induced by cytokinin and are highly similar to bacterial two-component response regulators. We have isolated T-DNA insertions in six of the type-A ARRs and constructed multiple insertional mutants, including the arr3,4,5,6,8,9 hextuple mutant. Single arr mutants were indistinguishable from the wild type in various cytokinin assays; double and higher order arr mutants showed progressively increasing sensitivity to cytokinin, indicating functional overlap among type-A ARRs and that these genes act as negative regulators of cytokinin responses. The induction of cytokinin primary response genes was amplified in arr mutants, indicating that the primary response to cytokinin is affected. Spatial patterns of ARR gene expression were consistent with partially redundant function of these genes in cytokinin signaling. The arr mutants show altered red light sensitivity, suggesting a general involvement of type-A ARRs in light signal transduction. Further, morphological phenotypes of some arr mutants suggest complex regulatory interactions and gene-specific functions among family members.
Cell | 1999
Takashi Hirayama; Joseph J. Kieber; Noriko Hirayama; Mikhail Kogan; Plinio Guzman; Saeid Nourizadeh; Jose M. Alonso; William P. Dailey; Andrew Dancis; Joseph R. Ecker
Ethylene is an important regulator of plant growth. We identified an Arabidopsis mutant, responsive-to-antagonist1 (ran1), that shows ethylene phenotypes in response to treatment with trans-cyclooctene, a potent receptor antagonist. Genetic epistasis studies revealed an early requirement for RAN1 in the ethylene pathway. RAN1 was cloned and found to encode a protein with similarity to copper-transporting P-type ATPases, including the human Menkes/Wilson proteins and yeast Ccc2p. Expression of RAN1 complemented the defects of a ccc2delta mutant, demonstrating its function as a copper transporter. Transgenic CaMV 35S::RAN1 plants showed constitutive expression of ethylene responses, due to cosuppression of RAN1. These results provide an in planta demonstration that ethylene signaling requires copper and reveal that RAN1 acts by delivering copper to create functional hormone receptors.
The Plant Cell | 1998
Ingrid Brandstatter; Joseph J. Kieber
Cytokinins are central regulators of plant growth and development, but little is known about their mode of action. By using differential display, we identified a gene, IBC6 (for induced by cytokinin), from etiolated Arabidopsis seedlings, that is induced rapidly by cytokinin. The steady state level of IBC6 mRNA was elevated within 10 min by the exogenous application of cytokinin, and this induction did not require de novo protein synthesis. IBC6 was not induced by other plant hormones or by light. A second Arabidopsis gene with a sequence highly similar to IBC6 was identified. This IBC7 gene also was induced by cytokinin, although with somewhat slower kinetics and to a lesser extent. The pattern of expression of the two genes was similar, with higher expression in leaves, rachises, and flowers and lower transcript levels in roots and siliques. Sequence analysis revealed that IBC6 and IBC7 are similar to the receiver domain of bacterial two-component response regulators. This homology, coupled with previously published work on the CKI1 histidine kinase homolog, suggests that these proteins may play a role in early cytokinin signaling.
The Plant Cell | 2003
Hyun Sook Chae; Francois Faure; Joseph J. Kieber
The Arabidopsis ethylene-overproducing mutants eto1, eto2, and eto3 have been suggested to affect the post-transcriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase (ACS). Here, we present the positional cloning of the gene corresponding to the dominant eto3 mutation and show that the eto3 phenotype is the result of a missense mutation within the C-terminal domain of ACS9, which encodes one isoform of the Arabidopsis ACS gene family. This mutation is analogous to the dominant eto2 mutation that affects the C-terminal domain of the highly similar ACS5. Analysis of purified recombinant ACS5 and epitope-tagged ACS5 in transgenic Arabidopsis revealed that eto2 does not increase the specific activity of the enzyme either in vitro or in vivo; rather, it increases the half-life of the protein. In a similar manner, cytokinin treatment increased the stability of ACS5 by a mechanism that is at least partially independent of the eto2 mutation. The eto1 mutation was found to act by increasing the function of ACS5 by stabilizing this protein. These results suggest that an important mechanism by which ethylene biosynthesis is controlled is the regulation of the stability of ACS, mediated at least in part through the C-terminal domain.
Journal of Biological Chemistry | 2003
Zhiyong Gao; Yi-Feng Chen; Melynda D. Randlett; Xue Chu Zhao; Jennifer L. Findell; Joseph J. Kieber; G. Eric Schaller
The plant hormone ethylene is perceived by a five-member family of receptors related to the bacterial histidine kinases. The Raf-like kinase CTR1 functions downstream of the ethylene receptors as a negative regulator of ethylene signal transduction. CTR1 is shown here to be associated with membranes of the endoplasmic reticulum in Arabidopsis as a result of its interactions with ethylene receptors. Membrane association of CTR1 is reduced by mutations that eliminate ethylene receptors and by a mutation in CTR1 that reduces its ability to bind to the ethylene receptor ETR1. Direct evidence that CTR1 is part of an ethylene receptor signaling complex was obtained by co-purification of the ethylene receptor ETR1 with a tagged version of CTR1 from an Arabidopsis membrane extract. The histidine kinase activity of ETR1 is not required for its association with CTR1, based on co-purification of tagged ETR1 mutants and CTR1 after expression in a transgenic yeast system. These data demonstrate that CTR1 is part of an ethylene receptor signaling complex in Arabidopsis and support a model in which localization of CTR1 to the endoplasmic reticulum is necessary for its function. Additional data that demonstrate a post-transcriptional effect of ethylene upon the expression of CTR1 suggest that production of ethylene receptor signaling complexes may be coordinately regulated.
The Plant Cell | 2006
Claire E. Hutchison; Jie Li; Cristiana T. Argueso; Mónica Benito González; Eurie Lee; Michael W. Lewis; Bridey B. Maxwell; Tony D. Perdue; G. Eric Schaller; Jose M. Alonso; Joseph R. Ecker; Joseph J. Kieber
Arabidopsis thaliana histidine phosphotransfer proteins (AHPs) are similar to bacterial and yeast histidine phosphotransfer proteins (HPts), which act in multistep phosphorelay signaling pathways. A phosphorelay pathway is the current model for cytokinin signaling. To assess the role of AHPs in cytokinin signaling, we isolated T-DNA insertions in the five AHP genes that are predicted to encode functional HPts and constructed multiple insertion mutants, including an ahp1,2,3,4,5 quintuple mutant. Single ahp mutants were indistinguishable from wild-type seedlings in cytokinin response assays. However, various higher-order mutants displayed reduced sensitivity to cytokinin in diverse cytokinin assays, indicating both a positive role for AHPs in cytokinin signaling and functional overlap among the AHPs. In contrast with the other four AHPs, AHP4 may play a negative role in some cytokinin responses. The quintuple ahp mutant showed various abnormalities in growth and development, including reduced fertility, increased seed size, reduced vascular development, and a shortened primary root. These data indicate that most of the AHPs are redundant, positive regulators of cytokinin signaling and affect multiple aspects of plant development.
The Plant Cell | 2005
Michael G. Mason; Dennis E. Mathews; D. Aaron Argyros; Bridey B. Maxwell; Joseph J. Kieber; Jose M. Alonso; Joseph R. Ecker; G. Eric Schaller
Type-B Arabidopsis thaliana response regulators (ARRs) are transcription factors that function in the final step of two-component signaling systems. To characterize their role in plant growth and development, we isolated T-DNA insertions within six of the genes (ARR1, ARR2, ARR10, ARR11, ARR12, and ARR18) from the largest subfamily of type-B ARRs and also constructed various double and triple combinations of these mutations. Higher order mutants revealed progressively decreased sensitivity to cytokinin, including effects on root elongation, lateral root formation, callus induction and greening, and induction of cytokinin primary response genes. The triple mutant arr1,10,12 showed almost complete insensitivity to cytokinin under many of the assay conditions used. By contrast, no significant change in the sensitivity to ethylene was found among the mutants examined. These results indicate that there is functional overlap among the type-B ARRs and that they act as positive regulators of cytokinin signal transduction.
Plant Physiology | 2002
Georg Haberer; Joseph J. Kieber
Cytokinins were discovered in the search for factors that promoted division of plant cells in culture. Naturally occurring cytokinins are N 6-substituted adenine derivatives that generally contain an isoprenoid derivative side chain. These hormones influence numerous aspects of plant development and