Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristiane Lenz Dalla Corte is active.

Publication


Featured researches published by Cristiane Lenz Dalla Corte.


Brain Research | 2006

Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro

Caroline Wagner; Roselei Fachinetto; Cristiane Lenz Dalla Corte; Verônica B. Brito; Diego Severo; Gilvan de Oliveira Costa Dias; Ademir F. Morel; Cristina W. Nogueira; João Batista Teixeira da Rocha

Reactive oxygen species have been demonstrated to be associated with a variety of diseases including neurodegenerative disorders. Flavonoid compounds have been investigated for their protective action against oxidative mechanisms in different in vivo and in vitro models, which seems to be linked to their antioxidant properties. In the present study, we examine the protective mechanism of quercitrin, a glycoside form of quercetin, against the production of TBARS induced by different agents. TBARS production was stimulated by the incubation of rat brain homogenate with Fe2+, Fe2+ plus EDTA, quinolinic acid (QA), sodium nitroprusside (SNP) and potassium ferricyanide ([Fe(CN)6]3-). Quercitrin was able to prevent the formation of TBARS induced by pro-oxidant agents tested; however, it was more effective against potassium ferricyanide ([Fe(CN)6]3-, IC50=2.5), than quinolinic acid (QA, IC50=6 microg/ml) and sodium nitroprusside (SNP, IC50=5.88 microg/ml) than Fe2+ (Fe2+, IC50=14.81 microg/ml), Fe2+ plus EDTA (Fe2+ plus EDTA, IC50=48.15 microg/ml). The effect of quercitrin on the Fenton reaction was also investigated (deoxyribose degradation). Quercitrin caused a significant decrease in deoxyribose degradation that was not dependent on the concentration. Taken together, the data presented here indicate that quercitrin exhibits a scavenger and antioxidant role, and these effects probably are mediated via different mechanisms, which may involve the negative modulation of the Fenton reaction and NMDA receptor.


Epilepsia | 2009

Swimming training prevents pentylenetetrazol-induced inhibition of Na+, K+-ATPase activity, seizures, and oxidative stress

Mauren Assis Souza; Mauro Schneider Oliveira; Ana Flávia Furian; Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Frederico Diniz Lima; Liriana Correa Dalla Corte; Luiz Fernando Almeida Silva; Leandro Thies Retamoso; Cristiane Lenz Dalla Corte; Gustavo Orione Puntel; Daiana Silva de Ávila; Félix Alexandre Antunes Soares; Michele Rechia Fighera; Carlos Fernando Mello; Luiz Fernando Freire Royes

Purpose:  In the present study we decided to investigate whether physical exercise protects against the electrographic, oxidative, and neurochemical alterations induced by subthreshold to severe convulsive doses of pentyltetrazole (PTZ).


Neurochemistry International | 2009

Additive anticonvulsant effects of creatine supplementation and physical exercise against pentylenetetrazol-induced seizures.

Leonardo Magno Rambo; Leandro Rodrigo Ribeiro; Mauro Schneider Oliveira; Ana Flávia Furian; Frederico Diniz Lima; Mauren Assis Souza; Luiz Fernando Almeida Silva; Leandro Thies Retamoso; Cristiane Lenz Dalla Corte; Gustavo Orione Puntel; Daiana Silva de Ávila; Félix Alexandre Antunes Soares; Michele Rechia Fighera; Carlos Fernando Mello; Luiz Fernando Freire Royes

Although physical activity and creatine supplementation have been a documented beneficial effect on neurological disorders, its implications for epilepsy are still controversial. Thus, we decided to investigate the effects of 6 weeks swimming training, creatine supplementation (300 mg/kg; p.o.) or its combination seizures and neurochemical alterations induced by pentylenetetrazol (PTZ). We found that 6 weeks of physical training or creatine supplementation decreased the duration of PTZ-induced seizures in adult male Wistar rats, as measured by cortical and hippocampal electroencephalography and behavioral analysis. Importantly, the combination between physical training and creatine supplementation had additive anticonvulsant effects, since it increased the onset latency for PTZ-induced seizures and was more effective in decrease seizure duration than physical training and creatine supplementation individually. Analysis of selected parameters of oxidative stress and antioxidant defenses in the hippocampus revealed that physical training, creatine supplementation or its combination abrogated the PTZ-elicited increase in levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonylation, as well as decrease in non-protein-thiols content, catalase (CAT) and SOD activities. In addition, this protocol of physical training and creatine supplementation prevented the PTZ-induced decrease in hippocampal Na+,K+-ATPase activity. Altogether, these results suggest that protection elicited physical training and creatine supplementation of selected targets for reactive species-mediated damage decrease of neuronal excitability and consequent oxidative damage elicited by PTZ. In conclusion, the present study shows that physical training, creatine supplementation or its combination attenuated PTZ-induced seizures and oxidative damage in vivo, and provide evidence that combination between creatine supplementation and physical exercise may be a useful strategy in the treatment of convulsive disorders.


PLOS ONE | 2013

New Therapeutic Approach: Diphenyl Diselenide Reduces Mitochondrial Dysfunction in Acetaminophen-Induced Acute Liver Failure

Nélson R. Carvalho; Edovando José Flores da Rosa; Michele Hinerasky da Silva; Cintia C. Tassi; Cristiane Lenz Dalla Corte; Sara Carbajo-Pescador; José L. Mauriz; Javier González-Gallego; Félix Alexandre Antunes Soares

The acute liver failure (ALF) induced by acetaminophen (APAP) is closely related to oxidative damage and depletion of hepatic glutathione, consequently changes in cell energy metabolism and mitochondrial dysfunction have been observed after APAP overdose. Diphenyl diselenide [(PhSe)2], a simple organoselenium compound with antioxidant properties, previously demonstrated to confer hepatoprotection. However, little is known about the protective mechanism on mitochondria. The main objective of this study was to investigate the effects (PhSe)2 to reduce mitochondrial dysfunction and, secondly, compare in the liver homogenate the hepatoprotective effects of the (PhSe)2 to the N-acetylcysteine (NAC) during APAP-induced ALF to validate our model. Mice were injected intraperitoneal with APAP (600 mg/kg), (PhSe)2 (15.6 mg/kg), NAC (1200 mg/kg), APAP+(PhSe)2 or APAP+NAC, where the (PhSe)2 or NAC treatment were given 1 h following APAP. The liver was collected 4 h after overdose. The plasma alanine and aspartate aminotransferase activities increased after APAP administration. APAP caused a remarkable increase of oxidative stress markers (lipid peroxidation, reactive species and protein carbonylation) and decrease of the antioxidant defense in the liver homogenate and mitochondria. APAP caused a marked loss in the mitochondrial membrane potential, the mitochondrial ATPase activity, and the rate of mitochondrial oxygen consumption and increased the mitochondrial swelling. All these effects were significantly prevented by (PhSe)2. The effectiveness of (PhSe)2 was similar at a lower dose than NAC. In summary, (PhSe)2 provided a significant improvement to the mitochondrial redox homeostasis and the mitochondrial bioenergetics dysfunction caused by membrane permeability transition in the hepatotoxicity APAP-induced.


Chemico-Biological Interactions | 2009

Butane-2,3-dionethiosemicarbazone: an oxime with antioxidant properties.

Gustavo Orione Puntel; Nélson R. Carvalho; Priscila Gubert; Aline Schwertner Palma; Cristiane Lenz Dalla Corte; Daiana Silva de Ávila; Maria Ester Pereira; Vanessa Santana Carratu; Leandro Bresolin; João Batista Teixeira da Rocha; Félix Alexandre Antunes Soares

Oximes are compounds generally used to reverse the acetylcholinesterase (AChE) inhibition caused by organophosphates (OPs). The aim of this study was to examine the capacity of the butane-2,3-dionethiosemicarbazone oxime to scavenge different forms of reactive species (RS) in vitro, as well as counteract their formation. The potential antioxidant and toxic activity of the oxime was assayed both in vitro and ex vivo. The obtained results indicate a significant hydrogen peroxide (H2O2), nitric oxide (NO) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity at 0.275, 0.5 and 5microM of oxime, respectively (p< or =0.05). The oxime exhibited a powerful inhibitory effect on dihydroxybenzoate formation (25microM) (p< or =0.05) and also decreased deoxyribose degradation induced by Fe2+ and via Fenton reaction (0.44 and 0.66mM, respectively) (p< or =0.05). The oxime showed a significant inhibitory effect on sigma-phenantroline reaction with Fe2+ (0.4mM) suggesting a possible interaction between the oxime and iron. A significant decrease in the basal and pro-oxidant-induced lipid peroxidation in brain, liver, and kidney of mice was observed both in vitro and ex vivo (p< or =0.05). In addition, in our ex vivo experiments the oxime did not depict any significant changes in thiol levels of liver, kidney and brain as well as did not modify the delta-aminolevulinate dehydratase (delta-ALA-D) activity in these tissues. Taken together our results indicate an in vitro and ex vivo antioxidant activity of the oxime possibly due to its scavenging activity toward different RS and a significant iron interaction.


Nutrition | 2014

Brazilian nut consumption by healthy volunteers improves inflammatory parameters.

Elisângela Colpo; Carlos Dalton de Avila Vilanova; Luiz Gustavo Brenner Reetz; Marta M.M.F. Duarte; Iria Luiza Gomes Farias; Daiane Francine Meinerz; Douglas Oscar Ceolin Mariano; Raquel G. Vendrusculo; Aline Augusti Boligon; Cristiane Lenz Dalla Corte; Roger Wagner; Margareth Linde Athayde; João Batista Teixeira da Rocha

OBJECTIVE The aim of this study was to investigate the effect of a single dose of Brazil nuts on the inflammatory markers of healthy individuals. METHOD A randomized crossover study was conducted with 10 healthy individuals (mean age 24.7 ± 3.4 y). Each individual was tested four times regarding intake of different portions of Brazil nuts: 0, 5, 20 and 50 g. At each testing period, peripheral blood was collected before and at 1, 3, 6, 9, 24, and 48 h after intake of nuts, as well as at 5 and 30 d after intake of various Brazil nut portions. Blood samples were tested for high-sensitivity to C-reactive protein, interleukin (IL)-1, IL-6, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, aspartate and alanine aminotransferases, albumin, total protein, alkaline phosphatase, gamma-glutamyltransferase, urea, and creatinine. RESULTS Consumption of nuts did not affect biochemical parameters for liver and kidney function, indicating absence of hepatic and renal toxicity. A single intake of Brazil nuts (20 or 50 g) caused a significant decrease in serum IL-1, IL-6, TNF-α, and IFN-γ levels (P < 0.05), whereas serum levels of IL-10 were significantly increased (P < 0.05). CONCLUSION The results indicate a long-term decrease in inflammatory markers after a single intake of large portions of Brazil nuts in healthy volunteers. Therefore, the long-term effect of regular Brazil nut consumption on inflammatory markers should be better investigated.


Brain Research | 2005

Effect of ebselen and organochalcogenides on excitotoxicity induced by glutamate in isolated chick retina

Fernanda Bossemeyer Centurião; Cristiane Lenz Dalla Corte; Márcio W. Paixão; Antonio Luis Braga; Gilson Zeni; Tatiana Emanuelli; João Batista Teixeira da Rocha

In this study, we evaluated the effects of three simple organochalcogenides (diphenyl diselenide, diphenyl ditelluride and diphenyl telluride) and ebselen on the glutamate-driven 45Ca2+ influx into chick embryonic retinal cells, as well as their effects on the excitotoxic injury in retina cells. None of the compounds tested interfered with basal 45Ca2+ uptake. Diphenyl diselenide and diphenyl ditelluride had no effects on glutamate-driven 45Ca2+ influx. Diphenyl telluride (100-400 microM) decreased and ebselen (100-400 microM) completely blocked the glutamate-driven 45Ca2+ influx (P < 0.01) into chick retinal explants. The assessment of neural injury was made spectrophotometrically by quantification of cellularly reduced MTT (3(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) 24 h after the beginning of glutamate exposure (8 h). Ebselen had no effects on retinal MTT reduction when co-incubated with glutamate for 8 h. However, when ebselen (100 and 400 microM) was co-incubated for 8 h with glutamate and remained in the incubation media until MTT evaluation (24 h after the beginning of incubation), it protected retinal cells against the decrease in MTT reduction induced by glutamate. These data indicate that besides its capacity of interacting with Ca2+ channels, other mechanisms are involved in the neuroprotection afforded by ebselen in this work, possibly its antioxidant properties.


BioMed Research International | 2013

Effects of diphenyl diselenide on methylmercury toxicity in rats.

Cristiane Lenz Dalla Corte; Caroline Wagner; Jéssie Haigert Sudati; Bruna Comparsi; Gerlania de Oliveira Leite; Alcindo Busanello; Félix Alexandre Antunes Soares; Michael Aschner; João Batista Teixeira da Rocha

This study investigates the efficacy of diphenyl diselenide [(PhSe)2] in attenuating methylmercury- (MeHg-)induced toxicity in rats. Adult rats were treated with MeHg [5 mg/kg/day, intragastrically (i.g.)] and/ or (PhSe)2 [1 mg/kg/day, intraperitoneally (i.p.)] for 21 days. Body weight gain and motor deficits were evaluated prior to treatment, on treatment days 11 and 21. In addition, hepatic and cerebral mitochondrial function (reactive oxygen species (ROS) formation, total and nonprotein thiol levels, membrane potential (ΔΨm), metabolic function, and swelling), hepatic, cerebral, and muscular mercury levels, and hepatic, cerebral, and renal thioredoxin reductase (TrxR) activity were evaluated. MeHg caused hepatic and cerebral mitochondrial dysfunction and inhibited TrxR activity in liver (38,9%), brain (64,3%), and kidney (73,8%). Cotreatment with (PhSe)2 protected hepatic and cerebral mitochondrial thiols from depletion by MeHg but failed to completely reverse MeHgs effect on hepatic and cerebral mitochondrial dysfunction or hepatic, cerebral, and renal inhibition of TrxR activity. Additionally, the cotreatment with (PhSe)2 increased Hg accumulation in the liver (50,5%) and brain (49,4%) and increased the MeHg-induced motor deficits and body-weight loss. In conclusion, these results indicate that (PhSe)2 can increase Hg body burden as well as the neurotoxic effects induced by MeHg exposure in rats.


Toxicology in Vitro | 2012

The antioxidant properties of different phthalocyanines.

Guilherme Pires Amaral; Gustavo Orione Puntel; Cristiane Lenz Dalla Corte; Fernando Dobrachinski; Rômulo Pillon Barcelos; Luiza Lena Bastos; Daiana Silva Ávila; João Batista Teixeira da Rocha; Edegar Ozorio da Silva; Robson Luiz Puntel; Félix Alexandre Antunes Soares

Oxidative stress is involved in the etiology of several chronic diseases, including cardiovascular disease, diabetes, cancer, and neurodegenerative disorders. From this perspective, we have evaluated the possible antioxidant capacities of five different phthalocyanines (PCs), consisting of four metallophthalocyanines (MPCs) and one simple phthalocyanine (PC) in order to explore, for the first time, the potential antioxidant activities of these compounds. Our results show that all PCs tested in this study have significant antioxidant activity in lipid peroxidation assay, providing protection from sodium nitroprusside -induced oxidative damage to supernatant from the homogenized liver, brain, e rim of mice. Compared to the non-induced control, the PCs were generally more efficient in reducing malondialdehyde levels in all assays on lipid peroxidation induced by sodium nitroprusside; the order of approximate decrease in efficiency was as follows: manganese-PC (better efficiency)>copper-PC>iron-PC>zinc-PC>PC (worst efficiency). Furthermore, the copper-PC and manganese-PC compounds exerted a significant protective effect in deoxyribose degradation assays, when employing Fe(2+), Fe(2+)+H(2)O(2), and H(2)O(2) solutions. In conclusion, all PCs tested here were shown to be promising compounds for future in vivo investigations, because of their potential antioxidant activities in vitro.


BioMed Research International | 2015

Virtual screening of acetylcholinesterase inhibitors using the Lipinski's rule of five and ZINC databank.

Pablo A. Nogara; Rogério de Aquino Saraiva; Diones Caeran Bueno; Lílian Juliana Lissner; Cristiane Lenz Dalla Corte; Marcos M. Braga; Denis Broock Rosemberg; João Batista Teixeira da Rocha

Alzheimers disease (AD) is a progressive and neurodegenerative pathology that can affect people over 65 years of age. It causes several complications, such as behavioral changes, language deficits, depression, and memory impairments. One of the methods used to treat AD is the increase of acetylcholine (ACh) in the brain by using acetylcholinesterase inhibitors (AChEIs). In this study, we used the ZINC databank and the Lipinskis rule of five to perform a virtual screening and a molecular docking (using Auto Dock Vina 1.1.1) aiming to select possible compounds that have quaternary ammonium atom able to inhibit acetylcholinesterase (AChE) activity. The molecules were obtained by screening and further in vitro assays were performed to analyze the most potent inhibitors through the IC50 value and also to describe the interaction models between inhibitors and enzyme by molecular docking. The results showed that compound D inhibited AChE activity from different vertebrate sources and butyrylcholinesterase (BChE) from Equus ferus (EfBChE), with IC50 ranging from 1.69 ± 0.46 to 5.64 ± 2.47 µM. Compound D interacted with the peripheral anionic subsite in both enzymes, blocking substrate entrance to the active site. In contrast, compound C had higher specificity as inhibitor of EfBChE. In conclusion, the screening was effective in finding inhibitors of AChE and BuChE from different organisms.

Collaboration


Dive into the Cristiane Lenz Dalla Corte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caroline Wagner

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar

Cristina W. Nogueira

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Gustavo Orione Puntel

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Daiana Silva de Ávila

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Fernando Dobrachinski

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar

Jeferson Luis Franco

Universidade Federal do Pampa

View shared research outputs
Top Co-Authors

Avatar

Luiza Lena Bastos

Universidade Federal de Santa Maria

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge