Cristiano De Pittà
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristiano De Pittà.
The EMBO Journal | 2011
Elisa Penna; Francesca Orso; Daniela Cimino; Enrico Tenaglia; Antonio Lembo; Elena Quaglino; Laura Poliseno; Adele Haimovic; Simona Osella-Abate; Cristiano De Pittà; Eva Pinatel; Michael B. Stadler; Paolo Provero; Maria Grazia Bernengo; Iman Osman; Daniela Taverna
Malignant melanoma is fatal in its metastatic stage. It is therefore essential to unravel the molecular mechanisms that govern disease progression to metastasis. MicroRNAs (miRs) are endogenous non‐coding RNAs involved in tumourigenesis. Using a melanoma progression model, we identified a novel pathway controlled by miR‐214 that coordinates metastatic capability. Pathway components include TFAP2C, homologue of a well‐established melanoma tumour suppressor, the adhesion receptor ITGA3 and multiple surface molecules. Modulation of miR‐214 influences in vitro tumour cell movement and survival to anoikis as well as extravasation from blood vessels and lung metastasis formation in vivo. Considering that miR‐214 is known to be highly expressed in human melanomas, our data suggest a critical role for this miRNA in disease progression and the establishment of distant metastases.
BMC Genomics | 2009
Paola Venier; Cristiano De Pittà; Filippo Bernante; Laura Varotto; Barbara De Nardi; Giuseppe Bovo; Philippe Roch; Beatriz Novoa; Antonio Figueras; Alberto Pallavicini; Gerolamo Lanfranchi
BackgroundAlthough Bivalves are among the most studied marine organisms due to their ecological role, economic importance and use in pollution biomonitoring, very little information is available on the genome sequences of mussels. This study reports the functional analysis of a large-scale Expressed Sequence Tag (EST) sequencing from different tissues of Mytilus galloprovincialis (the Mediterranean mussel) challenged with toxic pollutants, temperature and potentially pathogenic bacteria.ResultsWe have constructed and sequenced seventeen cDNA libraries from different Mediterranean mussel tissues: gills, digestive gland, foot, anterior and posterior adductor muscle, mantle and haemocytes. A total of 24,939 clones were sequenced from these libraries generating 18,788 high-quality ESTs which were assembled into 2,446 overlapping clusters and 4,666 singletons resulting in a total of 7,112 non-redundant sequences. In particular, a high-quality normalized cDNA library (Nor01) was constructed as determined by the high rate of gene discovery (65.6%). Bioinformatic screening of the non-redundant M. galloprovincialis sequences identified 159 microsatellite-containing ESTs. Clusters, consensuses, related similarities and gene ontology searches have been organized in a dedicated, searchable database http://mussel.cribi.unipd.it.ConclusionWe defined the first species-specific catalogue of M. galloprovincialis ESTs including 7,112 unique transcribed sequences. Putative microsatellite markers were identified. This annotated catalogue represents a valuable platform for expression studies, marker validation and genetic linkage analysis for investigations in the biology of Mediterranean mussels.
The FASEB Journal | 2013
Daniela Cimino; Cristiano De Pittà; Francesca Orso; Matteo Zampini; Silvia Casara; Elisa Penna; Elena Quaglino; Marco Forni; Christian Damasco; Eva Pinatel; Riccardo Ponzone; Chiara Romualdi; Cathrin Brisken; Michele De Bortoli; Nicoletta Biglia; Paolo Provero; Gerolamo Lanfranchi; Daniela Taverna
Breast cancer is often fatal during its metastatic dissemination. To unravel the role of microRNAs (miRs) during malignancy, we analyzed miR expression in 77 primary breast carcinomas and identified 16 relapse‐associated miRs that correlate with survival and/or distinguish tumor subtypes in different datasets. Among them, miR‐148b, down‐regulated in aggressive breast tumors, was found to be a major coordinator of malignancy. In fact, it is able to oppose various steps of tumor progression when overexpressed in cell lines by influencing invasion, survival to anoikis, extravasation, lung metastasis formation, and chemotherapy response. miR‐148b controls malignancy by coordinating a novel pathway involving over 130 genes and, in particular, it directly targets players of the integrin signaling, such as ITGA5, ROCK1, PIK3CA/p110α, and NRAS, as well as CSF1, a growth factor for stroma cells. Our findings reveal the importance of the identified 16 miRs for disease outcome predictions and suggest a critical role for miR‐148b in the control of breast cancer progression.—Cimino, D., De Pittà, C., Orso, F., Zampini, M., Casara, C., Penna, E., Quaglino, E., Forni, M., Damasco, C., Pinatel, E., Ponzone, R., Romualdi, C., Brisken, C., De Bortoli, M., Biglia, N., Provero, P., Lanfranchi, G., Taverna, D. miR148b is a major coordinator of breast cancer progression in a relapse‐associated microRNA signature by targeting ITGA5, ROCK1, PIK3CA, NRAS, and CSF1. FASEB J. 27, 1223–1235 (2013). www.fasebj.org
PLOS ONE | 2012
Cristina Girardi; Cristiano De Pittà; Silvia Casara; Gabriele Sales; Gerolamo Lanfranchi; Lucia Celotti; Maddalena Mognato
Background Ionizing radiation (IR) can be extremely harmful for human cells since an improper DNA-damage response (DDR) to IR can contribute to carcinogenesis initiation. Perturbations in DDR pathway can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs) small noncoding RNA that act as post-transcriptional regulators of gene expression. In this study we gained insight into the role of miRNAs in the regulation of DDR to IR under microgravity, a condition of weightlessness experienced by astronauts during space missions, which could have a synergistic action on cells, increasing the risk of radiation exposure. Methodology/Principal Findings We analyzed miRNA expression profile of human peripheral blood lymphocytes (PBL) incubated for 4 and 24 h in normal gravity (1 g) and in modeled microgravity (MMG) during the repair time after irradiation with 0.2 and 2Gy of γ-rays. Our results show that MMG alters miRNA expression signature of irradiated PBL by decreasing the number of radio-responsive miRNAs. Moreover, let-7i*, miR-7, miR-7-1*, miR-27a, miR-144, miR-200a, miR-598, miR-650 are deregulated by the combined action of radiation and MMG. Integrated analyses of miRNA and mRNA expression profiles, carried out on PBL of the same donors, identified significant miRNA-mRNA anti-correlations of DDR pathway. Gene Ontology analysis reports that the biological category of “Response to DNA damage” is enriched when PBL are incubated in 1 g but not in MMG. Moreover, some anti-correlated genes of p53-pathway show a different expression level between 1 g and MMG. Functional validation assays using luciferase reporter constructs confirmed miRNA-mRNA interactions derived from target prediction analyses. Conclusions/Significance On the whole, by integrating the transcriptome and microRNome, we provide evidence that modeled microgravity can affects the DNA-damage response to IR in human PBL.
Journal of Biological Chemistry | 2014
Ricardo José Soares; Stefano Cagnin; Francesco Chemello; Matteo Silvestrin; Antonio Musarò; Cristiano De Pittà; Gerolamo Lanfranchi; Marco Sandri
Background: MicroRNAs are important modulators of gene expression but their role in the atrophy program and in muscle loss is unknown. Results: miRNA-206 and miRNA-21 are critical for regulation of the atrophy program after denervation. Conclusion: miRNAs are important for the fine-tuning of the atrophy program. Significance: Modulating miRNA expression is a novel potential therapeutic approach for counteracting muscle loss and weakness in catabolic conditions. Loss of muscle proteins and the consequent weakness has important clinical consequences in diseases such as cancer, diabetes, chronic heart failure, and in aging. In fact, excessive proteolysis causes cachexia, accelerates disease progression, and worsens life expectancy. Muscle atrophy involves a common pattern of transcriptional changes in a small subset of genes named atrophy-related genes or atrogenes. Whether microRNAs play a role in the atrophy program and muscle loss is debated. To understand the involvement of miRNAs in atrophy we performed miRNA expression profiling of mouse muscles under wasting conditions such as fasting, denervation, diabetes, and cancer cachexia. We found that the miRNA signature is peculiar of each catabolic condition. We then focused on denervation and we revealed that changes in transcripts and microRNAs expression did not occur simultaneously but were shifted. Indeed, whereas transcriptional control of the atrophy-related genes peaks at 3 days, changes of miRNA expression maximized at 7 days after denervation. Among the different miRNAs, microRNA-206 and -21 were the most induced in denervated muscles. We characterized their pattern of expression and defined their role in muscle homeostasis. Indeed, in vivo gain and loss of function experiments revealed that miRNA-206 and miRNA-21 were sufficient and required for atrophy program. In silico and in vivo approaches identified transcription factor YY1 and the translational initiator factor eIF4E3 as downstream targets of these miRNAs. Thus miRNAs are important for fine-tuning the atrophy program and their modulation can be a novel potential therapeutic approach to counteract muscle loss and weakness in catabolic conditions.
Hepatology | 2014
Sara Montagnese; Cristiano De Pittà; Michele De Rui; Michela Corrias; Matteo Turco; Carlo Merkel; Piero Amodio; Rodolfo Costa; Debra J. Skene; Angelo Gatta
A considerable proportion of patients with cirrhosis exhibit insomnia, delayed sleep habits, and excessive daytime sleepiness. These have been variously attributed to hepatic encephalopathy and impaired hepatic melatonin metabolism, but the understanding of their pathophysiology remains limited and their treatment problematic. Sleep is regulated by the interaction of a homeostatic and a circadian process. The homeostatic process determines sleep propensity in relation to sleep‐wake history, thus the need to sleep increases with the duration of the waking period. The circadian process, which is marked by the 24‐hour rhythm of the hormone melatonin, is responsible for the alternation of high/low sleep propensity in relation to dark/light cues. Circadian sleep regulation has been studied in some depth in patients with cirrhosis, who show delays in the 24‐hour melatonin rhythm, most likely in relation to reduced sensitivity to light cues. However, while melatonin abnormalities are associated with delayed sleep habits, they do not seem to offer a comprehensive explanation to the insomnia exhibited by these patients. Fewer data are available on homeostatic sleep control: it has been recently hypothesized that patients with cirrhosis and hepatic encephalopathy might be unable, due to excessive daytime sleepiness, to accumulate the need/ability to produce restorative sleep. This review will describe in some detail the features of sleep‐wake disturbances in patients with cirrhosis, their mutual relationships, and those, if any, with hepatic failure/hepatic encephalopathy. A separate section will cover the available information on their pathophysiology. Finally, etiological treatment will be briefly discussed. (Hepatology 2014;59:705–712)
International Journal of Cancer | 2006
Cristiano De Pittà; Lucia Tombolan; Giada Albiero; F. Sartori; Chiara Romualdi; Giuseppe Jurman; Modesto Carli; Cesare Furlanello; Gerolamo Lanfranchi; Angelo Rosolen
We analyzed the expression signatures of 14 tumor biopsies from children affected by alveolar rhabdomyosarcoma (ARMS) to identify genes correlating to biological features of this tumor. Seven of these patients were positive for the PAX3‐FKHR fusion gene and 7 were negative. We used a cDNA platform containing a large majority of probes derived from muscle tissues. The comparison of transcription profiles of tumor samples with fetal skeletal muscle identified 171 differentially expressed genes common to all ARMS patients. The functional classification analysis of altered genes led to the identification of a group of transcripts (LGALS1, BIN1) that may be relevant for the tumorigenic processes. The muscle‐specific microarray platform was able to distinguish PAX3‐FKHR positive and negative ARMS through the expression pattern of a limited number of genes (RAC1, CFL1, CCND1, IGFBP2) that might be biologically relevant for the different clinical behavior and aggressiveness of the 2 ARMS subtypes. Expression levels for selected candidate genes were validated by quantitative real‐time reverse‐transcription PCR.
BMC Genomics | 2006
Chiara Romualdi; Cristiano De Pittà; Lucia Tombolan; Stefania Bortoluzzi; F. Sartori; Angelo Rosolen; Gerolamo Lanfranchi
BackgroundRhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated.ResultsIn this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS.ConclusionOur results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies.
Chronobiology International | 2010
Gabriella Mazzotta; Cristiano De Pittà; Clara Benna; Gerolamo Lanfranchi; Cristiano Bertolucci; Rodolfo Costa
Antarctic krill (Euphausia superba) inhabit a region with strong seasonality in several parameters, such as photoperiod, light intensity, extent of sea ice, and food availability. In particular, seasonal changes in environmental light regimes have been shown to strongly influence krill metabolism, representing control signals for seasonal regulation of physiology of this key Southern Ocean species. Here, we report the identification of a cryptochrome gene, a cardinal component of the clockwork machinery in several organisms. EsCRY appears to be an ortholog of mammalian-like CRYs and clusters with the insect CRY2 subfamily. EsCRY has the canonical bipartite CRY structure, with a conserved N-terminal domain and a highly divergent C-terminus, that bears several binding motifs, some of them shared with insect CRY2 and others peculiar for EsCRY. We have evaluated the temporal expression of Escry both at mRNA and protein levels in individuals harvested from the Ross Sea at different times throughout the 24 h cycle during the Antarctic summer. We observed a daily fluctuation in abundance for Escry mRNA in the head, with high levels around 06:00 h, which is not mirrored by a cycle in the corresponding protein. Our findings represent a first step toward establishing the presence of an endogenous circadian time-keeping mechanism that might allow this organism to synchronize its physiology and behavior to the Antarctic light regimes. (Author correspondence: [email protected] or [email protected])
BMC Genomics | 2008
Cristiano De Pittà; Cristiano Bertolucci; Gabriella Mazzotta; Filippo Bernante; Giorgia Rizzo; Barbara De Nardi; Alberto Pallavicini; Gerolamo Lanfranchi; Rodolfo Costa
BackgroundLittle is known about the genome sequences of Euphausiacea (krill) although these crustaceans are abundant components of the pelagic ecosystems in all oceans and used for aquaculture and pharmaceutical industry. This study reports the results of an expressed sequence tag (EST) sequencing project from different tissues of Euphausia superba (the Antarctic krill).ResultsWe have constructed and sequenced five cDNA libraries from different Antarctic krill tissues: head, abdomen, thoracopods and photophores. We have identified 1.770 high-quality ESTs which were assembled into 216 overlapping clusters and 801 singletons resulting in a total of 1.017 non-redundant sequences. Quantitative RT-PCR analysis was performed to quantify and validate the expression levels of ten genes presenting different EST countings in krill tissues. In addition, bioinformatic screening of the non-redundant E. superba sequences identified 69 microsatellite containing ESTs. Clusters, consensuses and related similarity and gene ontology searches were organized in a dedicated E. superba database http://krill.cribi.unipd.it.ConclusionWe defined the first tissue transcriptional signatures of E. superba based on functional categorization among the examined tissues. The analyses of annotated transcripts showed a higher similarity with genes from insects with respect to Malacostraca possibly as an effect of the limited number of Malacostraca sequences in the public databases. Our catalogue provides for the first time a genomic tool to investigate the biology of the Antarctic krill.