Cristiano V. Bizarro
Pontifícia Universidade Católica do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristiano V. Bizarro.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Josep Maria Huguet; Cristiano V. Bizarro; Nuria Forns; Steven B. Smith; Carlos Bustamante; Felix Ritort
Accurate knowledge of the thermodynamic properties of nucleic acids is crucial to predicting their structure and stability. To date most measurements of base-pair free energies in DNA are obtained in thermal denaturation experiments, which depend on several assumptions. Here we report measurements of the DNA base-pair free energies based on a simplified system, the mechanical unzipping of single DNA molecules. By combining experimental data with a physical model and an optimization algorithm for analysis, we measure the 10 unique nearest-neighbor base-pair free energies with 0.1 kcal mol-1 precision over two orders of magnitude of monovalent salt concentration. We find an improved set of standard energy values compared with Unified Oligonucleotide energies and a unique set of 10 base-pair-specific salt-correction values. The latter are found to be strongest for AA/TT and weakest for CC/GG. Our unique energy values and salt corrections improve predictions of DNA unzipping forces and are fully compatible with melting temperatures for oligos. The method should make it possible to obtain free energies, enthalpies, and entropies in conditions not accessible by bulk methodologies.
ACS Nano | 2013
Joan Camunas-Soler; Silvia Frutos; Cristiano V. Bizarro; Sara de Lorenzo; Maria Eugenia Fuentes-Perez; Roland Ramsch; Susana Vílchez; Conxita Solans; Fernando Moreno-Herrero; Fernando Albericio; Ramon Eritja; Ernest Giralt; Sukhendu B. Dev; Felix Ritort
Knowledge of the mechanisms of interaction between self-aggregating peptides and nucleic acids or other polyanions is key to the understanding of many aggregation processes underlying several human diseases (e.g., Alzheimers and Parkinsons diseases). Determining the affinity and kinetic steps of such interactions is challenging due to the competition between hydrophobic self-aggregating forces and electrostatic binding forces. Kahalalide F (KF) is an anticancer hydrophobic peptide that contains a single positive charge that confers strong aggregative properties with polyanions. This makes KF an ideal model to elucidate the mechanisms by which self-aggregation competes with binding to a strongly charged polyelectrolyte such as DNA. We use optical tweezers to apply mechanical forces to single DNA molecules and show that KF and DNA interact in a two-step kinetic process promoted by the electrostatic binding of DNA to the aggregate surface followed by the stabilization of the complex due to hydrophobic interactions. From the measured pulling curves we determine the spectrum of binding affinities, kinetic barriers, and lengths of DNA segments sequestered within the KF-DNA complex. We find there is a capture distance beyond which the complex collapses into compact aggregates stabilized by strong hydrophobic forces and discuss how the bending rigidity of the nucleic acid affects this process. We hypothesize that within an in vivo context, the enhanced electrostatic interaction of KF due to its aggregation might mediate the binding to other polyanions. The proposed methodology should be useful to quantitatively characterize other compounds or proteins in which the formation of aggregates is relevant.
Current Topics in Medicinal Chemistry | 2013
Juleane Lunardi; José Eduardo Sacconi Nunes; Cristiano V. Bizarro; Luiz Augusto Basso; Diógenes Santiago Santos; Pablo Machado
Worldwide, tuberculosis is the leading cause of morbidity and mortality due to a single bacterial pathogen, Mycobacterium tuberculosis (Mtb). The increasing prevalence of this disease, the emergence of multi-, extensively, and totally drug-resistant strains, complicated by co-infection with the human immunodeficiency virus, and the length of tuberculosis chemotherapy have led to an urgent and continued need for the development of new and more effective antitubercular drugs. Within this context, the L-histidine biosynthetic pathway, which converts 5-phosphoribosyl 1-pyrophosphate to L-histidine in ten enzymatic steps, has been reported as a promising target of antimicrobial agents. This pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants but is absent in mammals, making these enzymes highly attractive targets for the drug design of new antimycobacterial compounds with selective toxicity. Moreover, the biosynthesis of L-histidine has been described as essential for Mtb growth in vitro. Accordingly, a comprehensive overview of Mycobacterium tuberculosis histidine pathway enzymes as attractive targets for the development of new antimycobacterial agents is provided, mainly summarizing the previously reported inhibition data for Mtb or orthologous proteins.
Brazilian Journal of Chemical Engineering | 2013
G. Roth; José Eduardo Sacconi Nunes; L. A. Rosado; Cristiano V. Bizarro; G. Volpato; C. P. Nunes; G. Renard; Luiz Augusto Basso; Diógenes Santiago Santos; J. M. Chies
Asparaginases are the cornerstone therapy of many successful combination regimens for the treatment of acute lymphoblastic leukemia (ALL), the most common malignancy in children and adolescents. The aim of this work was to produce recombinant Erwinia carotovora L-asparaginase II in Escherichia coli fed-batch cultures. Using a robust fed-batch technique with pre-determined exponential feeding rates, our bioreactor culture system yielded 30.7 grams of dry cell weight and 0.9 grams of soluble rErAII protein per liter of culture broth. The homogeneous rErAII activity was determined by isothermal titration calorimetry (ITC). The enzyme Km values for the main substrates L-Asn and L-Gln were 33x10-6 M and 10x10-3 M, respectively. Our work shows that it is possible to produce an active homogeneous rErAII enzyme in the soluble cell fraction through IPTG-induced E. coli fed-batch cultivation.
PLOS ONE | 2012
Ardala Breda; Leonardo Kras Borges Martinelli; Cristiano V. Bizarro; Leonardo Astolfi Rosado; Caroline Bernardes Borges; Diógenes Santiago Santos; Luiz Augusto Basso
The 5-phospho-α-D-ribose 1-diphosphate (PRPP) metabolite plays essential roles in several biosynthetic pathways, including histidine, tryptophan, nucleotides, and, in mycobacteria, cell wall precursors. PRPP is synthesized from α-D-ribose 5-phosphate (R5P) and ATP by the Mycobacterium tuberculosis prsA gene product, phosphoribosylpyrophosphate synthase (MtPRS). Here, we report amplification, cloning, expression and purification of wild-type MtPRS. Glutaraldehyde cross-linking results suggest that MtPRS predominates as a hexamer, presenting varied oligomeric states due to distinct ligand binding. MtPRS activity measurements were carried out by a novel coupled continuous spectrophotometric assay. MtPRS enzyme activity could be detected in the absence of Pi. ADP, GDP and UMP inhibit MtPRS activity. Steady-state kinetics results indicate that MtPRS has broad substrate specificity, being able to accept ATP, GTP, CTP, and UTP as diphosphoryl group donors. Fluorescence spectroscopy data suggest that the enzyme mechanism for purine diphosphoryl donors follows a random order of substrate addition, and for pyrimidine diphosphoryl donors follows an ordered mechanism of substrate addition in which R5P binds first to free enzyme. An ordered mechanism for product dissociation is followed by MtPRS, in which PRPP is the first product to be released followed by the nucleoside monophosphate products to yield free enzyme for the next round of catalysis. The broad specificity for diphosphoryl group donors and detection of enzyme activity in the absence of Pi would suggest that MtPRS belongs to Class II PRS proteins. On the other hand, the hexameric quaternary structure and allosteric ADP inhibition would place MtPRS in Class I PRSs. Further data are needed to classify MtPRS as belonging to a particular family of PRS proteins. The data here presented should help augment our understanding of MtPRS mode of action. Current efforts are toward experimental structure determination of MtPRS to provide a solid foundation for the rational design of specific inhibitors of this enzyme.
Journal of Molecular Graphics & Modelling | 2015
Guilherme O. Petersen; Shalini Saxena; Janupally Renuka; Vijay Soni; Perumal Yogeeswari; Diógenes Santiago Santos; Cristiano V. Bizarro; Dharmarajan Sriram
3-Dehydroquinate dehydratase (DHQase), the third enzyme of the shikimate pathway, catalyzes the reversible reaction of 3-dehydroquinate into 3-dehydroshikimate. The aim of the present study was to identify new drug-like molecules as inhibitors for Mycobacterium tuberculosis DHQase employing structure-based pharmacophore modeling technique using an in house database consisting of about 2500 small molecules. Further the pharmacophore models were validated using enrichment calculations, and finally three models were employed for high-throughput virtual screening and docking to identify novel small molecules as DHQase inhibitors. Five compounds were identified, out of which, one molecule (Lead 1) showed 58% inhibition at 50μ M concentration in the Mtb DHQase assay. Chemical derivatives of the Lead 1 when tested evolved top two hits with IC50s of 17.1 and 31.5 μM as well as MIC values of 25 and 6.25 μg/mL respectively and no cytotoxicity up to 100 μM concentration.
Scientific Reports | 2017
Mariane Rotta; Luis Fernando Saraiva Macedo Timmers; Carlos Sequeiros-Borja; Cristiano V. Bizarro; Osmar Norberto de Souza; Diógenes Santiago Santos; Luiz Augusto Basso
The cellular milieu is a complex and crowded aqueous solution. Macromolecular crowding effects are commonly studied in vitro using crowding agents. The aim of the present study was to evaluate the effects, if any, of macromolecular synthetic crowding agents on the apparent steady-state kinetic parameters (Km, kcat, and kcat/Km) of Mycobacterium tuberculosis 2-trans-enoyl-ACP (CoA) reductase (InhA). Negligible effects on InhA activity were observed for ficoll 70, ficoll 400 and dextran 70. A complex effect was observed for PEG 6000. Glucose and sucrose showed, respectively, no effect on InhA activity and decreased kcat/Km for NADH and kcat for 2-trans-dodecenoyl-CoA. Molecular dynamics results suggest that InhA adopts a more compact conformer in sucrose solution. The effects of the crowding agents on the energy (Ea and Eη), enthalpy (∆H#), entropy (∆S#), and Gibbs free energy (∆G#) of activation were determined. The ∆G# values for all crowding agents were similar to buffer, suggesting that excluded volume effects did not facilitate stable activated ES# complex formation. Nonlinear Arrhenius plot for PEG 6000 suggests that “soft” interactions play a role in crowding effects. The results on InhA do not unequivocally meet the criteria for crowding effect due to exclude volume only.
International Journal of Antimicrobial Agents | 2017
Fernanda Teixeira Subtil; Anne Drumond Villela; Bruno Lopes Abbadi; Valnês S. Rodrigues-Junior; Cristiano V. Bizarro; Luis Fernando Saraiva Macedo Timmers; Osmar Norberto de Souza; Kenia Pissinate; Pablo Machado; Alexandre López-Gavín; Griselda Tudó; Julian González-Martín; Luiz Augusto Basso; Diógenes Santiago Santos
The 2-(quinolin-4-yloxy)acetamides (QOAs) have been reported to be promising molecules for tuberculosis treatment. Recent studies demonstrated their potent antimycobacterial activity, biological stability and synergism with rifampicin. The identification of the molecular target is an essential step towards the development of a novel drug candidate. Here, we report the target identification of the QOAs. We found that these compounds are active against Mycobacterium tuberculosis clinical isolates resistant to isoniazid, rifampicin, ethambutol, streptomycin and ethionamide. The initial evidence that DNA gyrase might be the target of QOAs, based on high minimum inhibitory concentration (MIC) values against ofloxacin-resistant clinical isolates and structural similarities with fluoroquinolones, was discarded by experiments performed with M. tuberculosis GyrA point mutant, DNA gyrase supercoiling inhibition assay and overexpression of DNA gyrase. We selected spontaneous mutants for our lead compound 21 and observed that these strains were also resistant to all QOA derivatives. The genomes of the spontaneous mutants were sequenced, and the results revealed a single mutation in qcrB gene (T313A), which indicates that the QOAs target the cytochrome bc1 complex. The protein-compound interaction was further investigated by molecular docking. These findings reinforce the relevance of these compounds as promising candidates for the treatment of multidrug-resistant tuberculosis.
Journal of Proteome Research | 2016
Rogério Valim Trindade; Antonio Frederico Michel Pinto; Diógenes Santiago Santos; Cristiano V. Bizarro
In recent years, phenotypic screening has assumed a leading role in drug discovery efforts. However, development of new drugs from bioactive compounds obtained in screening campaigns requires identification of the cellular targets responsible for their biological activities. A new energetics-based method for target identification is presented: pulse proteolysis and precipitation for target identification (PePTID). In this method, proteins incubated with or without a ligand and submitted to a brief proteolytic pulse are directly analyzed and compared using a label-free semiquantitative mass spectrometry strategy, dispensing the SDS-PAGE readout and greatly improving the throughput. As a proof-of-concept, we applied the PePTID method to identify ATP-binding proteins in Mycobacterium smegmatis, a model system for Mycobacterium tuberculosis, the etiological agent of tuberculosis.
Journal of Inorganic Biochemistry | 2018
Julie Laborde; Céline Deraeve; Francisca Gilmara de Mesquita Vieira; Alix Sournia-Saquet; Lionel Rechignat; Anne Drumond Villela; Bruno Lopes Abbadi; Fernanda Souza Macchi; Kenia Pissinati; Cristiano V. Bizarro; Pablo Machado; Luiz Augusto Basso; Geneviève Pratviel; Luiz Gonzaga de França Lopes; Eduardo Henrique Silva Sousa; Vania Bernardes-Génisson
The emergence of multidrug-resistant strains of Mycobacterium tuberculosis (MTB) represents a major threat to global health. Isoniazid (INH) is a prodrug used in the first-line treatment of tuberculosis. It undergoes oxidation by a catalase-peroxidase KatG, leading to generation of an isonicotinoyl radical that reacts with NAD(H) forming the INH-NADH adduct as the active metabolite. A redox-mediated activation of isoniazid using an iron metal complex was previously proposed as a strategy to overcome isoniazid resistance due to KatG mutations. Here, we have prepared a series of iron metal complexes with isoniazid and analogues, containing alkyl substituents at the hydrazide moiety, and also with pyrazinamide derivatives. These complexes were activated by H2O2 and studied by ESR and LC-MS. For the first time, the formation of the oxidized INH-NAD adduct from the pentacyano(isoniazid)ferrate(II) complex was detected by LC-MS, supporting a redox-mediated activation, for which a mechanistic proposition is reported. ESR data showed all alkylated hydrazides, in contrast to non-substituted hydrazides, only generated alkyl-based radicals. The structural modifications did not improve minimal inhibitory concentration (MIC) against MTB in comparison to isoniazid iron complex, providing support to isonicotinoyl radical formation as a requirement for activity. Nonetheless, the pyrazinoic acid hydrazide iron complex showed redox-mediated activation using H2O2 with generation of a pyrazinoyl radical intermediate and production of pyrazinoic acid, which is in fact the active metabolite of pyrazinamide prodrug. Thereby, this strategy can also unveil new opportunities for activation of this type of drug.
Collaboration
Dive into the Cristiano V. Bizarro's collaboration.
Antônio Frederico Michel Pinto
Pontifícia Universidade Católica do Rio Grande do Sul
View shared research outputs