Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luiz Augusto Basso is active.

Publication


Featured researches published by Luiz Augusto Basso.


Memorias Do Instituto Oswaldo Cruz | 2006

The resumption of consumption - : A review on tuberculosis

Antonio Ruffino-Netto; Luiz Augusto Basso; Diógenes Santiago Santos

Among all infectious diseases that afflict humans, tuberculosis (TB) remains the deadliest. At present, epidemiologists estimate that one-third of the world population is infected with tubercle bacilli, which is responsible for 8 to 10 million new cases of TB and 3 million deaths annually throughout the world. Approximately 95% of new cases and 98% of deaths occur in developing nations, generally due to the few resources available to ensure proper treatment and where human immunodeficiency virus (HIV) infections are common. In 1882, Dr Robert Koch identified an acid-fast bacterium, Mycobacterium tuberculosis, as the causative agent of TB. Thirty-nine years later, BCG vaccine was introduced for human use, and became the most widely used prophylactic strategy to fight TB in the world. The discovery of the properties of first-line antimycobacterial drugs in the past century yielded effective chemotherapies, which considerably decreased TB mortality rates worldwide. The later introduction of some additional drugs to the arsenal used to treat TB seemed to provide an adequate number of effective antimicrobial agents. The modern, standard short-course therapy for TB recommended by the World Health Organization is based on a four-drug regimen that must be strictly followed to prevent drug resistance acquisition, and relies on direct observation of patient compliance to ensure effective treatment. Mycobacteria show a high degree of intrinsic resistance to most antibiotics and chemotherapeutic agents due to the low permeability of its cell wall. Nevertheless, the cell wall barrier alone cannot produce significant levels of drug resistance. M. tuberculosis mutants resistant to any single drug are naturally present in any large bacterial population, irrespective of exposure to drugs. The frequency of mutants resistant to rifampicin and isoniazid, the two principal antimycobacterial drugs currently in use, is relatively high and, therefore, the large extra-cellular population of actively metabolizing and rapidly growing tubercle bacilli in cavitary lesions will contain organisms which are resistant to a single drug. Consequently, monotherapy or improperly administered two-drug therapies will select for drug-resistant mutants that may lead to drug resistance in the entire bacterial population. Thereby, despite the availability of effective chemotherapy and the moderately protective vaccine, new anti-TB agents are urgently needed to decrease the global incidence of TB. The resumption of TB, mainly caused by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains and HIV epidemics, led to an increased need to understand the molecular mechanisms of drug action and drug resistance, which should provide significant insight into the development of newer compounds. The latter should be effective to combat both drug-susceptible and MDR/XDR-TB.


Memorias Do Instituto Oswaldo Cruz | 2005

THE USE OF BIODIVERSITY AS SOURCE OF NEW CHEMICAL ENTITIES AGAINST DEFINED MOLECULAR TARGETS FOR TREATMENT OF MALARIA, TUBERCULOSIS, AND T-CELL MEDIATED DISEASES – A REVIEW

Luiz Augusto Basso; Luiz Hildebrando Pereira da Silva; Arthur Germano Fett-Neto; Walter Filgueira de Azevedo Junior; Mario Sergio Palma; João B. Calixto; Spartaco Astolfi Filho; Ricardo Ribeiro dos Santos; Milena Botelho Pereira Soares; Diógenes Santiago Santos

The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.


Current Drug Targets | 2007

Mycobacterial shikimate pathway enzymes as targets for drug design.

R. G. Ducati; Luiz Augusto Basso; Diógenes Santiago Santos

The aetiological agent of tuberculosis (TB), Mycobacterium tuberculosis, is responsible for millions of deaths annually. The increasing prevalence of the disease, the emergence of multidrug-resistant strains, and the devastating effect of human immunodeficiency virus co-infection have led to an urgent need for the development of new and more efficient antimycobacterial drugs. Since the shikimate pathway is present and essential in algae, higher plants, bacteria, and fungi, but absent from mammals, the gene products of the common pathway might represent attractive targets for the development of new antimycobacterial agents. In this review we describe studies on shikimate pathway enzymes, including enzyme kinetics and structural data. We have focused on mycobacterial shikimate pathway enzymes as potential targets for the development of new anti-TB agents.


Current Medicinal Chemistry | 2011

Purine Salvage Pathway in Mycobacterium tuberculosis

Rodrigo G. Ducati; Ardala Breda; Luiz Augusto Basso; Diógenes Santiago Santos

The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, infects one-third of the world population. TB remains the leading cause of mortality due to a single bacterial pathogen. The worldwide increase in incidence of M. tuberculosis has been attributed to the high proliferation rates of multi and extensively drug-resistant strains, and to co-infection with the human immunodeficiency virus. There is thus a continuous requirement for studies on mycobacterial metabolism to identify promising targets for the development of new agents to combat TB. Singular characteristics of this pathogen, such as functional and structural features of enzymes involved in fundamental metabolic pathways, can be evaluated to identify possible targets for drug development. Enzymes involved in the pyrimidine salvage pathway might be attractive targets for rational drug design against TB, since this pathway is vital for all bacterial cells, and is composed of enzymes considerably different from those present in humans. Moreover, the enzymes of the pyrimidine salvage pathway might have an important role in the mycobacterial latent state, since M. tuberculosis has to recycle bases and/or nucleosides to survive in the hostile environment imposed by the host. The present review describes the enzymes of M. tuberculosis pyrimidine salvage pathway as attractive targets for the development of new antimycobacterial agents. Enzyme functional and structural data have been included to provide a broader knowledge on which to base the search for compounds with selective biological activity.


Microbial Cell Factories | 2008

Human granulocyte colony stimulating factor (hG-CSF): cloning, overexpression, purification and characterization

Ana Letícia Vanz; Gaby Renard; Mario Sergio Palma; Jocelei Maria Chies; Sérgio Luiz Dalmora; Luiz Augusto Basso; Diógenes Santiago Santos

BackgroundBiopharmaceutical drugs are mainly recombinant proteins produced by biotechnological tools. The patents of many biopharmaceuticals have expired, and biosimilars are thus currently being developed. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine that acts on cells of the neutrophil lineage causing proliferation and differentiation of committed precursor cells and activation of mature neutrophils. Recombinant hG-CSF has been produced in genetically engineered Escherichia coli (Filgrastim) and successfully used to treat cancer patients suffering from chemotherapy-induced neutropenia. Filgrastim is a 175 amino acid protein, containing an extra N-terminal methionine, which is needed for expression in E. coli. Here we describe a simple and low-cost process that is amenable to scaling-up for the production and purification of homogeneous and active recombinant hG-CSF expressed in E. coli cells.ResultsHere we describe cloning of the human granulocyte colony-stimulating factor coding DNA sequence, protein expression in E. coli BL21(DE3) host cells in the absence of isopropyl-β-D-thiogalactopyranoside (IPTG) induction, efficient isolation and solubilization of inclusion bodies by a multi-step washing procedure, and a purification protocol using a single cationic exchange column. Characterization of homogeneous rhG-CSF by size exclusion and reverse phase chromatography showed similar yields to the standard. The immunoassay and N-terminal sequencing confirmed the identity of rhG-CSF. The biological activity assay, in vivo, showed an equivalent biological effect (109.4%) to the standard reference rhG-CSF. The homogeneous rhG-CSF protein yield was 3.2 mg of bioactive protein per liter of cell culture.ConclusionThe recombinant protein expression in the absence of IPTG induction is advantageous since cost is reduced, and the protein purification protocol using a single chromatographic step should reduce cost even further for large scale production. The physicochemical, immunological and biological analyses showed that this protocol can be useful to develop therapeutic bioproducts. In summary, the combination of different experimental strategies presented here allowed an efficient and cost-effective protocol for rhG-CSF production. These data may be of interest to biopharmaceutical companies interested in developing biosimilars and healthcare community.


Journal of Bacteriology | 2007

Functional Characterization by Genetic Complementation of aroB-Encoded Dehydroquinate Synthase from Mycobacterium tuberculosis H37Rv and Its Heterologous Expression and Purification

Jordana Dutra de Mendonça; Fernanda Ely; Mario Sergio Palma; Jeverson Frazzon; Luiz Augusto Basso; Diógenes Santiago Santos

The recent recrudescence of Mycobacterium tuberculosis infection and the emergence of multidrug-resistant strains have created an urgent need for new therapeutics against tuberculosis. The enzymes of the shikimate pathway are attractive drug targets because this route is absent in mammals and, in M. tuberculosis, it is essential for pathogen viability. This pathway leads to the biosynthesis of aromatic compounds, including aromatic amino acids, and it is found in plants, fungi, bacteria, and apicomplexan parasites. The aroB-encoded enzyme dehydroquinate synthase is the second enzyme of this pathway, and it catalyzes the cyclization of 3-deoxy-D-arabino-heptulosonate-7-phosphate in 3-dehydroquinate. Here we describe the PCR amplification and cloning of the aroB gene and the overexpression and purification of its product, dehydroquinate synthase, to homogeneity. In order to probe where the recombinant dehydroquinate synthase was active, genetic complementation studies were performed. The Escherichia coli AB2847 mutant was used to demonstrate that the plasmid construction was able to repair the mutants, allowing them to grow in minimal medium devoid of aromatic compound supplementation. In addition, homogeneous recombinant M. tuberculosis dehydroquinate synthase was active in the absence of other enzymes, showing that it is homomeric. These results will support the structural studies with M. tuberculosis dehydroquinate synthase that are essential for the rational design of antimycobacterial agents.


Current Pharmaceutical Design | 2006

Slow-onset inhibition of 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis by an inorganic complex.

Jaim S. Oliveira; Eduardo Henrique Silva Sousa; Osmar Norberto de Souza; lcaro S. Moreira; Diógenes Santiago Santos; Luiz Augusto Basso

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The reemergence of tuberculosis as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multi-drug-resistant strains have created a need for the development of new antimycobacterial agents. Mycolic acids, the hallmark of mycobacteria, are high-molecular-weight alpha-alkyl, beta-hydroxy fatty acids, which appear mostly as bound esters in the mycobacterial cell wall. The product of the M. tuberculosis inhA structural gene (InhA) has been shown to be the primary target for isoniazid (INH), the most prescribed drug for active TB and prophylaxis. InhA was identified as an NADH-dependent enoyl-ACP reductase specific for long-chain enoyl thioesters. InhA is a member of the mycobacterial Type II fatty acid biosynthesis system, which elongates acyl fatty acid precursors of mycolic acids. Although the history of chemotherapeutic agent development demonstrates the remarkably successful tinkering of a few structural scaffolds, it also emphasizes the ongoing, cyclical need for innovation. The main focus of our contribution is on new data describing the rationale for the design of a pentacyano(isoniazid)ferrateII compound that requires no KatG-activation, its chemical characterization, in vitro activity studies against WT and INH-resistant I21V M. tuberculosis enoyl reductases, the slow-onset inhibition mechanism of WT InhA by the inorganic complex, and molecular modeling of its interaction with WT InhA. This inorganic complex represents a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.


Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2007

Effects of the magnesium and chloride ions and shikimate on the structure of shikimate kinase from Mycobacterium tuberculosis

Marcio Vinicius Bertacine Dias; Lívia Maria Faím; Igor B. Vasconcelos; Jaim S. Oliveira; Luiz Augusto Basso; Diógenes Santiago Santos; Walter Filgueira de Azevedo

Bacteria, fungi and plants can convert carbohydrate and phosphoenolpyruvate into chorismate, which is the precursor of various aromatic compounds. The seven enzymes of the shikimate pathway are responsible for this conversion. Shikimate kinase (SK) is the fifth enzyme in this pathway and converts shikimate to shikimate-3-phosphate. In this work, the conformational changes that occur on binding of shikimate, magnesium and chloride ions to SK from Mycobacterium tuberculosis (MtSK) are described. It was observed that both ions and shikimate influence the conformation of residues of the active site of MtSK. Magnesium influences the conformation of the shikimate hydroxyl groups and the position of the side chains of some of the residues of the active site. Chloride seems to influence the affinity of ADP and its position in the active site and the opening length of the LID domain. Shikimate binding causes a closing of the LID domain and also seems to influence the crystallographic packing of SK. The results shown here could be useful for understanding the catalytic mechanism of SK and the role of ions in the activity of this protein.


Current Computer - Aided Drug Design | 2008

Virtual Screening of Drugs: Score Functions, Docking, and Drug Design

Ardala Breda; Luiz Augusto Basso; Diógenes Santiago Santos; Walter F. de Azevedo

The computational approach for new drug design and/or identification, was initially proposed in mid 70s. The virtual screening of chemical libraries against a biological target has proven its reliability on structure-based drug design, for instance, for many HIV virus protein inhibitors and for the development of Cyclin-Dependent Kinase inhibitors. Target- based virtual screening, allied to docking studies, enables searches on larger data set of probable ligands, with less costs than the traditional experimental screening. The increasing availability of small molecules databases and its free online distribution is now allowing not only pharmaceutical industries, but independent research labs as well, to apply this methodology on early stages of drug discovery. When the protein target structure is available, and a chemical virtual library is accessible, following questions need to be answered: how the target and the ligand interact and how these interactions may be evaluated? Several docking algorithms for the identification of the molecular features responsible for binding specificity are available. While such algorithms are very robust and accurate, the scoring functions remain more questionable in the sense of what parameters should be considered when defining protein-ligand binding affinity when ranking candidates pointed-out by the virtual screening to the next step on drug testing. Aside conformational and chemical information, pharmacokinetics properties should be considered as well when selecting potential new drugs. Along with structural well-match, appropriate molecular features that define desired kinetics characteristics should be consistently addressed for usefulness of virtual screening results. The present review is focused on these questions and their implication for virtual screening.


Scientia Agricola | 2009

Role of ferritin in the rice tolerance to iron overload

Vivian Chagas da Silveira; Cristina Fadanelli; Raul Antonio Sperotto; Ricardo Stein; Luiz Augusto Basso; Diógenes Santiago Santos; Itabajara da Silva Vaz Junior; Johnny Ferraz Dias; Janette Palma Fett

Plants ordinarily face iron (Fe) deficiency, since this mineral is poorly available in soils under aerobic conditions. Nonetheless, wetland and irrigated rice plants can be exposed to excess, highly toxic Fe. Ferritin is a ubiquitous Fe-storage protein, important for iron homeostasis. Increased ferritin accumulation resulting from higher Fe availability was shown in some plant species. However, the role of ferritin in tolerance mechanisms to Fe overload in rice is yet to be established. In this study, recombinant rice ferritin was expressed in Escherichia coli, producing an anti-rice ferritin polyclonal antibody which was used to evaluate ferritin accumulation in two rice (Oryza sativa L.) cultivars, either susceptible (BR-IRGA 409) or tolerant (EPAGRI 108) to Fe toxicity. Increased ferritin mRNA and protein levels resulting from excess Fe treatment were detected in both cultivars, with higher ferritin protein accumulation in EPAGRI 108 plants, which also reached lower shoot Fe concentrations when submitted to iron overload. The tolerance mechanism to excess Fe in EPAGRI 108 seems to include both restricted Fe translocation and increased ferritin accumulation. This is the first work that shows higher accumulation of the ferritin protein in an iron-excess tolerant Oryza sativa cultivar, providing evidence of a possible role of this protein in iron tolerance mechanisms.

Collaboration


Dive into the Luiz Augusto Basso's collaboration.

Top Co-Authors

Avatar

Diógenes Santiago Santos

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Pablo Machado

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Anne Drumond Villela

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Valnês S. Rodrigues-Junior

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Maria M. Campos

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Cristiano V. Bizarro

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Luis Fernando Saraiva Macedo Timmers

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Walter Filgueira de Azevedo

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Osmar Norberto de Souza

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Bruno Lopes Abbadi

Pontifícia Universidade Católica do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge