Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina A. Metildi is active.

Publication


Featured researches published by Cristina A. Metildi.


Journal of Surgical Oncology | 2014

Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model.

Cristina A. Metildi; Sharmeela Kaushal; George A. Luiken; Mark A. Talamini; Robert M. Hoffman; Michael Bouvet

The aim of this study was to evaluate a new fluorescently labeled chimeric anti‐CEA antibody for improved detection and resection of colon cancer.


Journal of Laparoendoscopic & Advanced Surgical Techniques | 2014

Successful Fluorescence-Guided Surgery on Human Colon Cancer Patient-Derived Orthotopic Xenograft Mouse Models Using a Fluorophore-Conjugated Anti-CEA Antibody and a Portable Imaging System

Yukihiko Hiroshima; Ali Maawy; Cristina A. Metildi; Yong Zhang; Fuminari Uehara; Shinji Miwa; Shuya Yano; Sho Sato; Takashi Murakami; Masashi Momiyama; Takashi Chishima; Kuniya Tanaka; Michael Bouvet; Itaru Endo; Robert M. Hoffman

BACKGROUND Fluorescence-guided surgery (FGS) can enable successful cancer surgery where bright-light surgery often cannot. There are three important issues for FGS going forward toward the clinic: (a) proper tumor labeling, (b) a simple portable imaging system for the operating room, and (c) patient-like mouse models in which to develop the technology. The present report addresses all three. MATERIALS AND METHODS Patient colon tumors were initially established subcutaneously in nonobese diabetic (NOD)/severe combined immune deficiency (SCID) mice immediately after surgery. The tumors were then harvested from NOD/SCID mice and passed orthotopically in nude mice to make patient-derived orthotopic xenograft (PDOX) models. Eight weeks after orthotopic implantation, a monoclonal anti-carcinoembryonic antigen (CEA) antibody conjugated with AlexaFluor 488 (Molecular Probes Inc., Eugene, OR) was delivered to the PDOX models as a single intravenous dose 24 hours before laparotomy. A hand-held portable fluorescence imaging device was used. RESULTS The primary tumor was clearly visible at laparotomy with the portable fluorescence imaging system. Frozen section microscopy of the resected specimen demonstrated that the anti-CEA antibody selectively labeled cancer cells in the colon cancer PDOX. The tumor was completely resected under fluorescence navigation. Histologic evaluation of the resected specimen demonstrated that cancer cells were not present in the margins, indicating successful tumor resection. The FGS animals remained tumor free for over 6 months. CONCLUSIONS The results of the present report indicate that FGS using a fluorophore-conjugated anti-CEA antibody and portable imaging system improves efficacy of resection for CEA-positive colorectal cancer. These data provide the basis for clinical trials.


Cancer Research | 2012

KRas Induces a Src/PEAK1/ErbB2 Kinase Amplification Loop That Drives Metastatic Growth and Therapy Resistance in Pancreatic Cancer

Jonathan A. Kelber; Theresa Reno; Sharmeela Kaushal; Cristina A. Metildi; Tracy Wright; Konstantin Stoletov; Jessica M. Weems; Frederick D. Park; Evangeline Mose; Yingchun Wang; Robert M. Hoffman; Andrew M. Lowy; Michael Bouvet; Richard L. Klemke

Early biomarkers and effective therapeutic strategies are desperately needed to treat pancreatic ductal adenocarcinoma (PDAC), which has a dismal 5-year patient survival rate. Here, we report that the novel tyrosine kinase PEAK1 is upregulated in human malignancies, including human PDACs and pancreatic intraepithelial neoplasia (PanIN). Oncogenic KRas induced a PEAK1-dependent kinase amplification loop between Src, PEAK1, and ErbB2 to drive PDAC tumor growth and metastasis in vivo. Surprisingly, blockade of ErbB2 expression increased Src-dependent PEAK1 expression, PEAK1-dependent Src activation, and tumor growth in vivo, suggesting a mechanism for the observed resistance of patients with PDACs to therapeutic intervention. Importantly, PEAK1 inactivation sensitized PDAC cells to trastuzumab and gemcitabine therapy. Our findings, therefore, suggest that PEAK1 is a novel biomarker, critical signaling hub, and new therapeutic target in PDACs.


Journal of The American College of Surgeons | 2012

Fluorescence-Guided Surgery Allows for More Complete Resection of Pancreatic Cancer, Resulting in Longer Disease-Free Survival Compared with Standard Surgery in Orthotopic Mouse Models

Cristina A. Metildi; Sharmeela Kaushal; Chanae R. Hardamon; Cynthia S. Snyder; Minya Pu; Karen Messer; Mark A. Talamini; Robert M. Hoffman; Michael Bouvet

BACKGROUND Negative surgical margins are vital to achieve cure and prolong survival in patients with pancreatic cancer. We inquired if fluorescence-guided surgery (FGS) could improve surgical outcomes and reduce recurrence rates in orthotopic mouse models of human pancreatic cancer. STUDY DESIGN A randomized active-control preclinical trial comparing bright light surgery (BLS) to FGS was used. Orthotopic mouse models of human pancreatic cancer were established using the BxPC-3 pancreatic cancer cell line expressing red fluorescent protein (RFP). Two weeks after orthotopic implantation, tumors were resected with BLS or FGS. Pre- and postoperative images were obtained with the OV-100 Small Animal Imaging System to assess completeness of surgical resection in real time. Postoperatively, noninvasive whole body imaging was done to assess recurrence and follow tumor progression. Six weeks postoperatively, mice were sacrificed to evaluate primary pancreatic and metastatic tumor burden at autopsy. RESULTS A more complete resection of pancreatic cancer was achieved using FGS compared with BLS: 98.9% vs 77.1%, p = 0.005. The majority of mice undergoing BLS (63.2%) had evidence of gross disease with no complete resections; 20% of mice undergoing FGS had complete resection and an additional 75% had only minimal residual disease (p = 0.0001). The mean postoperative tumor burden was significantly less with FGS compared with BLS: 0.08 ± 0.06 mm(2) vs 2.64 ± 0.63 mm(2), p = 0.001. The primary tumor burden at termination was significantly less with FGS compared with BLS: 19.3 ± 5.3 mm(2) vs 6.2 ± 3.6 mm(2), p = 0.048. FGS resulted in significantly longer disease-free survival than BLS (p = 0.02, hazard ratio = 0.39, 95% CI 0.17, 0.88). CONCLUSIONS Surgical outcomes were improved in pancreatic cancer using fluorescence-guidance. This novel approach has significant potential to improve surgical treatment of cancer.


Journal of Surgical Research | 2013

Fluorescence-guided surgery of human colon cancer increases complete resection resulting in cures in an orthotopic nude mouse model

Cristina A. Metildi; Sharmeela Kaushal; Cynthia S. Snyder; Robert M. Hoffman; Michael Bouvet

BACKGROUND We inquired if fluorescence-guided surgery (FGS) could improve surgical outcomes in fluorescent orthotopic nude mouse models of human colon cancer. METHODS We established fluorescent orthotopic mouse models of human colon cancer expressing a fluorescent protein. Tumors were resected under bright light surgery (BLS) or FGS. Pre- and post-operative images with the OV-100 Small Animal Imaging System (Olympus Corp, Tokyo Japan) were obtained to assess the extent of surgical resection. RESULTS All mice with primary tumor that had undergone FGS had complete resection compared with 58% of mice in the BLS group (P = 0.001). FGS resulted in decreased recurrence compared with BLS (33% versus 62%, P = 0.049) and lengthened disease-free median survival from 9 to >36 wk. The median overall survival increased from 16 wk in the BLS group to 31 weeks in the FGS group. FGS resulted in a cure in 67% of mice (alive without evidence of tumor at >6 mo after surgery) compared with only 37% of mice that underwent BLS (P = 0.049). CONCLUSIONS Surgical outcomes in orthotopic nude mouse models of human colon cancer were significantly improved with FGS. The present study can be translated to the clinic by various effective methods of fluorescently labeling tumors.


Journal of The American College of Surgeons | 2012

An LED light source and novel fluorophore combinations improve fluorescence laparoscopic detection of metastatic pancreatic cancer in orthotopic mouse models.

Cristina A. Metildi; Sharmeela Kaushal; Claudia Lee; Chanae R. Hardamon; Cynthia S. Snyder; George A. Luiken; Mark A. Talamini; Robert M. Hoffman; Michael Bouvet

BACKGROUND The aim of this study was to improve fluorescence laparoscopy of pancreatic cancer in an orthotopic mouse model with the use of a light-emitting diode (LED) light source and optimal fluorophore combinations. STUDY DESIGN Human pancreatic cancer models were established with fluorescent FG-RFP, MiaPaca2-GFP, BxPC-3-RFP, and BxPC-3 cancer cells implanted in 6-week-old female athymic mice. Two weeks postimplantation, diagnostic laparoscopy was performed with a Stryker L9000 LED light source or a Stryker X8000 xenon light source 24 hours after tail-vein injection of CEA antibodies conjugated with Alexa 488 or Alexa 555. Cancer lesions were detected and localized under each light mode. Intravital images were also obtained with the OV-100 Olympus and Maestro CRI Small Animal Imaging Systems, serving as a positive control. Tumors were collected for histologic analysis. RESULTS Fluorescence laparoscopy with a 495-nm emission filter and an LED light source enabled real-time visualization of the fluorescence-labeled tumor deposits in the peritoneal cavity. The simultaneous use of different fluorophores (Alexa 488 and Alexa 555), conjugated to antibodies, brightened the fluorescence signal, enhancing detection of submillimeter lesions without compromising background illumination. Adjustments to the LED light source permitted simultaneous detection of tumor lesions of different fluorescent colors and surrounding structures with minimal autofluorescence. CONCLUSIONS Using an LED light source with adjustments to the red, blue, and green wavelengths, it is possible to simultaneously identify tumor metastases expressing fluorescent proteins of different wavelengths, which greatly enhanced the signal without compromising background illumination. Development of this fluorescence laparoscopy technology for clinical use can improve staging and resection of pancreatic cancer.


Cancer Research | 2014

A Hypusine–eIF5A–PEAK1 Switch Regulates the Pathogenesis of Pancreatic Cancer

Ken Fujimura; Tracy Wright; Jan Strnadel; Sharmeela Kaushal; Cristina A. Metildi; Andrew M. Lowy; Michael Bouvet; Jonathan A. Kelber; Richard L. Klemke

Deregulation of protein synthesis is a hallmark of cancer cell proliferation, survival, and metastatic progression. eIF5A1 and its highly related isoform eIF5A2 are translation initiation factors that have been implicated in a range of human malignancies, but how they control cancer development and disease progression is still poorly understood. Here, we investigated how eIF5A proteins regulate pancreatic ductal adenocarcinoma (PDAC) pathogenesis. eIF5A proteins are the only known proteins regulated by a distinct posttranslational modification termed hypusination, which is catalyzed by two enzymes, deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). The highly selective nature of the hypusine modification and its amenability to pharmacologic inhibition make eIF5A proteins attractive therapeutic targets. We found that the expression and hypusination of eIF5A proteins are upregulated in human PDAC tissues and in premalignant pancreatic intraepithelial neoplasia tissues isolated from Pdx-1-Cre: LSL-KRAS(G12D) mice. Knockdown of eIF5A proteins in PDAC cells inhibited their growth in vitro and orthotopic tumor growth in vivo, whereas amplification of eIF5A proteins increased PDAC cell growth and tumor formation in mice. Small-molecule inhibitors of DHPS and DOHH both suppressed eIF5A hypusination, preventing PDAC cell growth. Interestingly, we found that eIF5A proteins regulate PDAC cell growth by modulating the expression of PEAK1, a nonreceptor tyrosine kinase essential for PDAC cell growth and therapy resistance. Our findings suggest that eIF5A proteins utilize PEAK1 as a downstream effector to drive PDAC pathogenesis and that pharmacologic inhibition of the eIF5A-hypusine-PEAK1 axis may provide a novel therapeutic strategy to combat this deadly disease.


Hepato-gastroenterology | 2011

Tumor-specific fluorescence antibody imaging enables accurate staging laparoscopy in an orthotopic model of pancreatic cancer.

Hop S. Tran Cao; Sharmeela Kaushal; Cristina A. Metildi; Rhiana Menen; Claudia Lee; Cynthia S. Snyder; Karen Messer; Minya Pu; George A. Luiken; Mark A. Talamini; Robert M. Hoffman; Michael Bouvet

BACKGROUND/AIMS Laparoscopy is important in staging pancreatic cancer, but false negatives remain problematic. Making tumors fluorescent has the potential to improve the accuracy of staging laparoscopy. METHODOLOGY Orthotopic and carcinomatosis models of pancreatic cancer were established with BxPC-3 human pancreatic cancer cells in nude mice. Alexa488-antiCEA conjugates were injected via tail vein 24 hours prior to laparoscopy. Mice were examined under bright field laparoscopic (BL) and fluorescence laparoscopic (FL) modes. Outcomes measured included time to identification of primary tumor for the orthotopic model and number of metastases identified within 2 minutes for the carcinomatosis model. RESULTS FL enabled more rapid and accurate identification and localization of primary tumors and metastases than BL. Using BL took statistically significantly longer time than FL (p<0.0001, fold change and 95% CI for BL vs. FL: 8.12 (4.54,14.52)). More metastatic lesions were detected and localized under FL compared to BL and with greater accuracy, with sensitivities of 96% vs. 40%, respectively, when compared to control. FL was sensitive enough to detect metastatic lesions <1mm. CONCLUSIONS The use of fluorescence laparoscopy with tumors labeled with fluorophore-conjugated anti-CEA antibody permits rapid detection and accurate localization of primary and metastatic pancreatic cancer in an orthotopic model. The results of the present report demonstrate the future clinical potential of fluorescence laparoscopy.


Gastroenterology Research and Practice | 2013

Fluorescence-guided surgery and fluorescence laparoscopy for gastrointestinal cancers in clinically-relevant mouse models.

Cristina A. Metildi; Robert M. Hoffman; Michael Bouvet

There are many challenges that face surgeons when attempting curative resection for gastrointestinal cancers. The ability to properly delineate tumor margins for complete resection is of utmost importance in achieving cure and giving the patient the best chance of prolonged survival. Targeted tumor imaging techniques have gained significant interest in recent years to enable better identification of tumor lesions to improve diagnosis and treatment of cancer from preoperative staging modalities to optimizing the surgeons ability to visualize tumor margins at the initial operation. Using unique characteristics of the tumor to fluorescently label the tissue can delineate tumor margins from normal surrounding tissue, allowing improved precision of surgical resection. In this paper, different methods of fluorescently labeling native tumor are discussed as well as the development of fluorescence laparoscopy and the potential role for fluorescence-guided surgery in the treatment of gastrointestinal cancers.


Journal of Laparoendoscopic & Advanced Surgical Techniques | 2011

Submillimeter-Resolution Fluorescence Laparoscopy of Pancreatic Cancer in a Carcinomatosis Mouse Model Visualizes Metastases Not Seen with Standard Laparoscopy

Hop S. Tran Cao; Sharmeela Kaushal; Rhiana Menen; Cristina A. Metildi; Claudia Lee; Cynthia S. Snyder; Mark A. Talamini; Robert M. Hoffman; Michael Bouvet

BACKGROUND Staging laparoscopy can visualize peritoneal and liver metastases in pancreatic cancer otherwise undetectable by preoperative imaging. However, false-negative rates may be as high as 18%-26%. The aim of the present study was to improve detection of metastatic pancreatic cancer with the use of fluorescence laparoscopy (FL) in a nude-mouse model with the tumors expressing green fluorescent protein (GFP). METHODS The carcinomatosis mouse model of human pancreatic cancer was established by intraperitoneal injections of green fluorescent protein-expressing MiaPaca-2 human pancreatic cancer cells into 6-week-old female athymic mice. Two weeks later, mice underwent diagnostic laparoscopy. Laparoscopy was performed first under standard brightfield lighting, followed by fluorescent lighting. The number of metastatic foci identified within the four quadrants of the peritoneal cavity was recorded. After laparoscopy, the animals were sacrificed, opened, and imaged with the OV-100 Small Animal Imaging system as a positive control to identify metastasis. Tumors were collected and processed for histologic review. RESULTS FL enabled visualization of pancreatic cancer metastatic foci not visualized with standard brightfield laparoscopy (BL). Under FL, in 1 representative mouse, 26 separate micrometastatic lesions were identified. In contrast, only very large tumors were seen using BL. Use of the OV-100 images, as positive controls, confirmed the presence of tumor foci. FL thus allowed identification and exact localization of submillimeter tumor foci. Such small-sized tumor foci were not distinguished from surrounding tissue under BL. All malignant lesions were histologically confirmed. CONCLUSIONS The use of FL enables the identification of tumor foci that cannot be seen with standard laparoscopy. The technology described in this report has important potential for the clinical development of FL.

Collaboration


Dive into the Cristina A. Metildi's collaboration.

Top Co-Authors

Avatar

Michael Bouvet

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan A. Kelber

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy Wright

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge