Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Benito is active.

Publication


Featured researches published by Cristina Benito.


Brain | 2009

Microglial CB2 cannabinoid receptors are neuroprotective in Huntington's disease excitotoxicity

Javier Palazuelos; Tania Aguado; M. Ruth Pazos; Boris Julien; Carolina Carrasco; Eva Resel; Onintza Sagredo; Cristina Benito; Julián Romero; Iñigo Azcoitia; Javier Fernández-Ruiz; Manuel Guzmán; Ismael Galve-Roperh

Cannabinoid-derived drugs are promising agents for the development of novel neuroprotective strategies. Activation of neuronal CB(1) cannabinoid receptors attenuates excitotoxic glutamatergic neurotransmission, triggers prosurvival signalling pathways and palliates motor symptoms in animal models of neurodegenerative disorders. However, in Huntingtons disease there is a very early downregulation of CB(1) receptors in striatal neurons that, together with the undesirable psychoactive effects triggered by CB(1) receptor activation, foster the search for alternative pharmacological treatments. Here, we show that CB(2) cannabinoid receptor expression increases in striatal microglia of Huntingtons disease transgenic mouse models and patients. Genetic ablation of CB(2) receptors in R6/2 mice, that express human mutant huntingtin exon 1, enhanced microglial activation, aggravated disease symptomatology and reduced mice lifespan. Likewise, induction of striatal excitotoxicity in CB(2) receptor-deficient mice by quinolinic acid administration exacerbated brain oedema, microglial activation, proinflammatory-mediator state and medium-sized spiny neuron degeneration. Moreover, administration of CB(2) receptor-selective agonists to wild-type mice subjected to excitotoxicity reduced neuroinflammation, brain oedema, striatal neuronal loss and motor symptoms. Studies on ganciclovir-induced depletion of astroglial proliferation in transgenic mice expressing thymidine kinase under the control of the glial fibrillary acidic protein promoter excluded the participation of proliferating astroglia in CB(2) receptor-mediated actions. These findings support a pivotal role for CB(2) receptors in attenuating microglial activation and preventing neurodegeneration that may pave the way to new therapeutic strategies for neuroprotection in Huntingtons disease as well as in other neurodegenerative disorders with a significant excitotoxic component.


The Journal of Neuroscience | 2007

Cannabinoid CB1 and CB2 Receptors and Fatty Acid Amide Hydrolase Are Specific Markers of Plaque Cell Subtypes in Human Multiple Sclerosis

Cristina Benito; Juan Pablo Romero; Rosa M. Tolón; Diego Clemente; Fabian Docagne; Cecilia J. Hillard; Carmen Guaza; Julián Romero

Increasing evidence supports the idea of a beneficial effect of cannabinoid compounds for the treatment of multiple sclerosis (MS). However, most experimental data come from animal models of MS. We investigated the status of cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase (FAAH) enzyme in brain tissue samples obtained from MS patients. Areas of demyelination were identified and classified as active, chronic, and inactive plaques. CB1 and CB2 receptors and FAAH densities and cellular sites of expression were examined using immunohistochemistry and immunofluorescence. In MS samples, cannabinoid CB1 receptors were expressed by cortical neurons, oligodendrocytes, and also oligodendrocyte precursor cells, demonstrated using double immunofluorescence with antibodies against the CB1 receptor with antibodies against type 2 microtubule-associated protein, myelin basic protein, and the platelet-derived growth factor receptor-α, respectively. CB1 receptors were also present in macrophages and infiltrated T-lymphocytes. Conversely, CB2 receptors were present in T-lymphocytes, astrocytes, and perivascular and reactive microglia (major histocompatibility complex class-II positive) in MS plaques. Specifically, CB2-positive microglial cells were evenly distributed within active plaques but were located in the periphery of chronic active plaques. FAAH expression was restricted to neurons and hypertrophic astrocytes. As seen for other neuroinflammatory conditions, selective glial expression of cannabinoid CB1 and CB2 receptors and FAAH enzyme is induced in MS, thus supporting a role for the endocannabinoid system in the pathogenesis and/or evolution of this disease.


Journal of Biological Chemistry | 2008

The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis

Javier Palazuelos; Nathalie Davoust; Boris Julien; Eric Hatterer; Tania Aguado; Raphael Mechoulam; Cristina Benito; Julián Romero; Augusto Silva; Manuel Guzmán; Serge Nataf; Ismael Galve-Roperh

Cannabinoids are potential agents for the development of therapeutic strategies against multiple sclerosis. Here we analyzed the role of the peripheral CB(2) cannabinoid receptor in the control of myeloid progenitor cell trafficking toward the inflamed spinal cord and their contribution to microglial activation in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE). CB(2) receptor knock-out mice showed an exacerbated clinical score of the disease when compared with their wild-type littermates, and this occurred in concert with extended axonal loss, T-lymphocyte (CD4(+)) infiltration, and microglial (CD11b(+)) activation. Immature bone marrow-derived CD34(+) myeloid progenitor cells, which play a role in neuroinflammatory pathologies, were shown to express CB(2) receptors and to be abundantly recruited toward the spinal cords of CB(2) knock-out EAE mice. Bone marrow-derived cell transfer experiments further evidenced the increased contribution of these cells to microglial replenishment in the spinal cords of CB(2)-deficient animals. In line with these observations, selective pharmacological CB(2) activation markedly reduced EAE symptoms, axonal loss, and microglial activation. CB(2) receptor manipulation altered the expression pattern of different chemokines (CCL2, CCL3, CCL5) and their receptors (CCR1, CCR2), thus providing a mechanistic explanation for its role in myeloid progenitor recruitment during neuroinflammation. These findings demonstrate the protective role of CB(2) receptors in EAE pathology; provide evidence for a new site of CB(2) receptor action, namely the targeting of myeloid progenitor trafficking and its contribution to microglial activation; and support the potential use of non-psychoactive CB(2) agonists in therapeutic strategies for multiple sclerosis and other neuroinflammatory disorders.Cannabinoids are potential agents for the development of therapeutic strategies against multiple sclerosis. Here we analyzed the role of the peripheral CB2 cannabinoid receptor in the control of myeloid progenitor cell trafficking toward the inflamed spinal cord and their contribution to microglial activation in an animal model of multiple sclerosis (experimental autoimmune encephalomyelitis, EAE). CB2 receptor knock-out mice showed an exacerbated clinical score of the disease when compared with their wild-type littermates, and this occurred in concert with extended axonal loss, T-lymphocyte (CD4+) infiltration, and microglial (CD11b+) activation. Immature bone marrow-derived CD34+ myeloid progenitor cells, which play a role in neuroinflammatory pathologies, were shown to express CB2 receptors and to be abundantly recruited toward the spinal cords of CB2 knock-out EAE mice. Bone marrow-derived cell transfer experiments further evidenced the increased contribution of these cells to microglial replenishment in the spinal cords of CB2-deficient animals. In line with these observations, selective pharmacological CB2 activation markedly reduced EAE symptoms, axonal loss, and microglial activation. CB2 receptor manipulation altered the expression pattern of different chemokines (CCL2, CCL3, CCL5) and their receptors (CCR1, CCR2), thus providing a mechanistic explanation for its role in myeloid progenitor recruitment during neuroinflammation. These findings demonstrate the protective role of CB2 receptors in EAE pathology; provide evidence for a new site of CB2 receptor action, namely the targeting of myeloid progenitor trafficking and its contribution to microglial activation; and support the potential use of non-psychoactive CB2 agonists in therapeutic strategies for multiple sclerosis and other neuroinflammatory disorders.


Brain | 2011

Loss of striatal type 1 cannabinoid receptors is a key pathogenic factor in Huntington’s disease

Cristina Blázquez; Anna Chiarlone; Onintza Sagredo; Tania Aguado; M. Ruth Pazos; Eva Resel; Javier Palazuelos; Boris Julien; María Salazar; Christine Börner; Cristina Benito; Carolina Carrasco; María Diez-Zaera; Paola Paoletti; Miguel Díaz-Hernández; Carolina Ruiz; Michael Sendtner; José J. Lucas; Justo García de Yébenes; Giovanni Marsicano; Krisztina Monory; Beat Lutz; Julián Romero; Jordi Alberch; Silvia Ginés; Jürgen Kraus; Javier Fernández-Ruiz; Ismael Galve-Roperh; Manuel Guzmán

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntingtons disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntingtons disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntingtons disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntingtons disease, and suggest that activation of these receptors in patients with Huntingtons disease may attenuate disease progression.


Glia | 2009

Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease.

Onintza Sagredo; Sara González; Ilia Aroyo; María Ruth Pazos; Cristina Benito; Isabel Lastres-Becker; Juan Pablo Romero; Rosa M. Tolón; Raphael Mechoulam; Emmanuel Brouillet; Julián Romero; Javier Fernández-Ruiz

Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntingtons disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate‐induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild‐type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX‐42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor‐α (TNF‐α) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF‐α. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD.


The Journal of Neuroscience | 2005

A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis.

Cristina Benito; Wong-Ki Kim; Iván Chavarría; Ceceila J. Hillard; Ken Mackie; Rosa M. Tolón; K R Williams; Julián Romero

Recent evidence supports the notion that the endocannabinoid system may play a crucial role in neuroinflammation. We explored the changes that some elements of this system exhibit in a macaque model of encephalitis induced by simian immunodeficiency virus. Our results show that profound alterations in the distribution of specific components of the endocannabinoid system occur as a consequence of the viral infection of the brain. Specifically, expression of cannabinoid receptors of the CB2 subtype was induced in the brains of infected animals, mainly in perivascular macrophages, microglial nodules, and T-lymphocytes, most likely of the CD8 subtype. In addition, the endogenous cannabinoid-degrading enzyme fatty acid amide hydrolase was overexpressed in perivascular astrocytes as well as in astrocytic processes reaching cellular infiltrates. Finally, the pattern of CB1 receptor expression was not modified in the brains of infected animals compared with that in control animals. These results resemble previous data obtained in Alzheimers disease human tissue samples and suggest that the endocannabinoid system may participate in the development of human immunodeficiency virus-induced encephalitis, because activation of CB2 receptors expressed by immune cells is likely to reduce their antiviral response and thus could favor the CNS entry of infected monocytes.


Proceedings of the National Academy of Sciences of the United States of America | 2014

A restricted population of CB1 cannabinoid receptors with neuroprotective activity

Anna Chiarlone; Luigi Bellocchio; Cristina Blázquez; Eva Resel; Edgar Soria-Gómez; Astrid Cannich; José Javier Ferrero; Onintza Sagredo; Cristina Benito; Julián Romero; José Sánchez-Prieto; Beat Lutz; Javier Fernández-Ruiz; Ismael Galve-Roperh; Manuel Guzmán

Significance Cannabinoids and their endogenous counterparts, the so-called endocannabinoids, promote neuroprotection in laboratory animals by engaging CB1 cannabinoid receptors, one of the most abundant types of receptors in the brain. However, the assessment of the physiological relevance and therapeutic potential of the CB1 receptor in neurological diseases is hampered, at least in part, by the lack of knowledge of the neuron-population specificity of CB1 receptor action. This study shows that a unique and well-defined population of CB1 receptors, namely that located on glutamatergic terminals, plays a key neuroprotective role in the mouse brain. This finding opens a new conceptual view on how the CB1 receptor evokes neuroprotection, and provides preclinical support for improving the development of cannabinoid-based neuroprotective therapies. The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.


Brain Research | 2009

The activation of cannabinoid CB2 receptors stimulates in situ and in vitro beta-amyloid removal by human macrophages.

Rosa María Tolón; Estefanía Núñez; María Ruth Pazos; Cristina Benito; Ana Isabel Castillo; José Martínez-Orgado; Julián Romero

The endocannabinoid system is a promising therapeutic target in a wide variety of diseases. However, the non-desirable psychotropic effects of natural and synthetic cannabinoids have largely counteracted their clinical usefulness. These effects are mostly mediated by cannabinoid receptors of the CB(1) type, that exhibit a wide distribution in neuronal elements of the CNS. Thus, the presence of other elements of this system in the CNS, such as CB(2) receptors, may open new possibilities for the development of cannabinoid-based therapies. These receptors are almost absent from the CNS in normal conditions but are up-regulated in glial cells under chronic neuroinflammatory stimuli, as has been described in Alzheimers disease. To understand the functional role of these receptors, we tested their role in the process of beta-amyloid removal, that is currently considered as one of the most promising experimental approaches for the treatment of this disease. Our results show that a CB(2) agonist (JWH-015) is capable of inducing the removal of native beta-amyloid removal from human frozen tissue sections as well as of synthetic pathogenic peptide by a human macrophage cell line (THP-1). Remarkably, this effect was achieved at low doses (maximum effect at 10 nM) and was specific for this type of cells, as U373MG astrocytoma cells did not respond to the treatment. The effect was CB(2)-mediated, at least partially, as the selective CB(2) antagonist SR144528 prevented the JWH-015-induced plaque removal in situ. These data corroborate the possible therapeutic interest of CB(2) cannabinoid specific chemicals in the treatment of Alzheimers disease.


Journal of Neuroinflammation | 2011

Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study.

Lourdes Ruiz-Valdepeñas; José Martínez-Orgado; Cristina Benito; África Millán; Rosa María Tolón; Julián Romero

BackgroundThe phytocannabinoid cannabidiol (CBD) exhibits antioxidant and antiinflammatory properties. The present study was designed to explore its effects in a mouse model of sepsis-related encephalitis by intravenous administration of lipopolysaccharide (LPS).MethodsVascular responses of pial vessels were analyzed by intravital microscopy and inflammatory parameters measured by qRT-PCR.ResultsCBD prevented LPS-induced arteriolar and venular vasodilation as well as leukocyte margination. In addition, CBD abolished LPS-induced increases in tumor necrosis factor-alpha and cyclooxygenase-2 expression as measured by quantitative real time PCR. The expression of the inducible-nitric oxide synthase was also reduced by CBD. Finally, preservation of Blood Brain Barrier integrity was also associated to the treatment with CBD.ConclusionsThese data highlight the antiinflammatory and vascular-stabilizing effects of CBD in endotoxic shock and suggest a possible beneficial effect of this natural cannabinoid.


Pediatric Allergy and Immunology | 2008

Allergies to fruits and vegetables

Montserrat Fernandez-Rivas; Cristina Benito; E. González-Mancebo; M. Dolores Alonso Díaz de Durana

Allergic reactions to fruits and vegetables are frequently observed in older children and adolescents. They can result from a primary sensitization to food allergens or from a primary sensitization to inhalant allergens such as pollens or latex. In the case of fruit allergies, the stability of the allergens involved is crucial to the sensitization pathway and in the clinical presentation of the food allergy. Two patients allergic to fruits are presented and discussed in the light of the allergens involved. Patient 1 was a 14 yr‐old girl with a grass and olive pollen allergy who developed oropharyngeal symptoms typical of the oral allergy syndrome (OAS) with multiple fruits from taxonomically unrelated families, and who was sensitized to profilin. Patient 2 was an 8 yr‐old girl, with no pollen allergies, who developed systemic reactions to peach and apple, and who was sensitized to non‐specific lipid transfer proteins (LTP). Profilins are labile allergens present in pollens and foods, and sensitization occurs through the respiratory route to pollen profilin. The cross‐reactive IgE antibodies generated can elicit local reactions in the oropharyngeal mucosa (OAS) when exposed to fruit profilins. In contrast, LTPs are a family of stable allergens that resist thermal treatment and enzymatic digestion, and can thus behave as true food allergens inducing primary (non‐pollen related) sensitizations and triggering systemic reactions. These two cases represent two distinct patterns of sensitization and clinical expression of fruit allergies that are determined by the panallergens involved (LTPs and profilins) and their intrinsic physicochemical properties. Additionally, these two cases also show the improved diagnostic value of Component Resolved Diagnosis, and strengthen its utility in the routine diagnosis and management of patients.

Collaboration


Dive into the Cristina Benito's collaboration.

Top Co-Authors

Avatar

Julián Romero

Universidad Francisco de Vitoria

View shared research outputs
Top Co-Authors

Avatar

Rosa M. Tolón

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Estefanía Núñez

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

María Ruth Pazos

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Javier Fernández-Ruiz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Rosa María Tolón

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ismael Galve-Roperh

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Manuel Guzmán

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Onintza Sagredo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Boris Julien

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge