Rosa M. Tolón
Medical College of Wisconsin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rosa M. Tolón.
The Journal of Neuroscience | 2007
Cristina Benito; Juan Pablo Romero; Rosa M. Tolón; Diego Clemente; Fabian Docagne; Cecilia J. Hillard; Carmen Guaza; Julián Romero
Increasing evidence supports the idea of a beneficial effect of cannabinoid compounds for the treatment of multiple sclerosis (MS). However, most experimental data come from animal models of MS. We investigated the status of cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase (FAAH) enzyme in brain tissue samples obtained from MS patients. Areas of demyelination were identified and classified as active, chronic, and inactive plaques. CB1 and CB2 receptors and FAAH densities and cellular sites of expression were examined using immunohistochemistry and immunofluorescence. In MS samples, cannabinoid CB1 receptors were expressed by cortical neurons, oligodendrocytes, and also oligodendrocyte precursor cells, demonstrated using double immunofluorescence with antibodies against the CB1 receptor with antibodies against type 2 microtubule-associated protein, myelin basic protein, and the platelet-derived growth factor receptor-α, respectively. CB1 receptors were also present in macrophages and infiltrated T-lymphocytes. Conversely, CB2 receptors were present in T-lymphocytes, astrocytes, and perivascular and reactive microglia (major histocompatibility complex class-II positive) in MS plaques. Specifically, CB2-positive microglial cells were evenly distributed within active plaques but were located in the periphery of chronic active plaques. FAAH expression was restricted to neurons and hypertrophic astrocytes. As seen for other neuroinflammatory conditions, selective glial expression of cannabinoid CB1 and CB2 receptors and FAAH enzyme is induced in MS, thus supporting a role for the endocannabinoid system in the pathogenesis and/or evolution of this disease.
Glia | 2009
Onintza Sagredo; Sara González; Ilia Aroyo; María Ruth Pazos; Cristina Benito; Isabel Lastres-Becker; Juan Pablo Romero; Rosa M. Tolón; Raphael Mechoulam; Emmanuel Brouillet; Julián Romero; Javier Fernández-Ruiz
Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntingtons disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate‐induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild‐type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX‐42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor‐α (TNF‐α) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF‐α. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD.
The Journal of Neuroscience | 2005
Cristina Benito; Wong-Ki Kim; Iván Chavarría; Ceceila J. Hillard; Ken Mackie; Rosa M. Tolón; K R Williams; Julián Romero
Recent evidence supports the notion that the endocannabinoid system may play a crucial role in neuroinflammation. We explored the changes that some elements of this system exhibit in a macaque model of encephalitis induced by simian immunodeficiency virus. Our results show that profound alterations in the distribution of specific components of the endocannabinoid system occur as a consequence of the viral infection of the brain. Specifically, expression of cannabinoid receptors of the CB2 subtype was induced in the brains of infected animals, mainly in perivascular macrophages, microglial nodules, and T-lymphocytes, most likely of the CD8 subtype. In addition, the endogenous cannabinoid-degrading enzyme fatty acid amide hydrolase was overexpressed in perivascular astrocytes as well as in astrocytic processes reaching cellular infiltrates. Finally, the pattern of CB1 receptor expression was not modified in the brains of infected animals compared with that in control animals. These results resemble previous data obtained in Alzheimers disease human tissue samples and suggest that the endocannabinoid system may participate in the development of human immunodeficiency virus-induced encephalitis, because activation of CB2 receptors expressed by immune cells is likely to reduce their antiviral response and thus could favor the CNS entry of infected monocytes.
Pediatric Research | 2007
David Fernández-López; M. Ruth Pazos; Rosa M. Tolón; M Angeles Moro; Julián Romero; Ignacio Lizasoain; José Martínez-Orgado
Neonatal hypoxic-ischemic encephalopathy (NHIE) is a devastating condition for which effective therapeutic treatments are still unavailable. Cannabinoids emerge as neuroprotective substances in adult animal studies; therefore, we aimed herein to test whether cannabinoids might reduce brain damage induced by hypoxia-ischemia (HI) in newborn rats. Thus, 7-d-old Wistar rats (P7) were exposed to 8% O2 for 120 min after left carotid artery ligature, then received s.c. vehicle (VEH) (HI+VEH), the cannabinoid agonist WIN55212 (WIN) (0.1 mg/kg), or WIN with the CB1 or CB2 receptor antagonist SR141617 (SR1) (3 mg/kg) or SR141588 (SR2) (2 mg/kg). Brain damage was assessed by magnetic resonance imaging (MRI) at 1, 3, and 7 d after the insult. At the end of the experiment, MRI findings were corroborated by histology (Nissl staining). HI+VEH showed an area of cytotoxic and vasogenic edema at 24 h after the insult, then evolving to necrosis. HI+WIN showed a similar damaged area at 24 h after the insult, but the final necrotic area was reduced by 66%. Coadministration of either SR1 or SR2 reversed the effects of WIN. In conclusion, likely by activating CB1 and CB2 receptors, WIN afforded robust neuroprotection in newborn rats after HI.
Molecular Neurobiology | 2007
Cristina Benito; Estefanía Núñez; María Ruth Pazos; Rosa M. Tolón; Julián Romero
The importance of the role of the endocannabinoid system (ECS) in neurodegenerative diseases has grown during the past few years. Mostly because of the high density and wide distribution of cannabinoid receptors of the CB1 type in the central nervous system (CNS), much research focused on the function(s) that these receptors might play in pathophysiological conditions. Our current understanding, however, points to much diverse roles for this system. In particular, other elements of the ECS, such as the fatty acid amide hydrolase (FAAH) or the CB2 cannabinoid receptor are now considered as promising pharmacological targets for some diseases and new cannabinoids have been incorporated as therapeutic tools. Although still preliminary, recent reports suggest that the modulation of the ECS may constitute a novel approach for the treatment of Alzheimer’s disease (AD). Data obtained in vitro, as well as in animal models for this disease and in human samples seem to corroborate the notion that the activation of the ECS, through the use of agonists or by enhancing the endogenous cannabinoid tone, may induce beneficial effects on the evolution of this disease.
Journal of Histochemistry and Cytochemistry | 2008
María Ruth Pazos; Rosa M. Tolón; Cristina Benito; Conrado Fernández Rodríguez; Juan José Gorgojo; Manuel Nevado; Mariano Álvarez; Francisco Arias; Francisca Almodóvar; María Teresa Pérez Fernández; José L. Lledó; Sara González; J.J. Fernández-Ruiz; Julián Romero
Experimental data suggest that the endogenous cannabinoid system is involved in gastric function in different animal species. In most of them, CB1 receptors have been localized on vagal terminals innervating the external wall of the stomach. We aimed at studying the putative presence and distribution of these receptors in the human gastric mucosa. To this end, we first performed Western blotting, RT-PCR, in situ hybridization, and immunohistochemical analysis of CB1 protein distribution in biopsy samples of healthy individuals. To determine the precise cell populations expressing CB1 receptors, we performed double immunofluorescence plus confocal microscopy analysis of the same samples. Our results show that CB1 receptors are present in the gastric epithelium of the mucosa. Specifically, they are expressed by a subpopulation of mucosal cells, the acid-secreting parietal cells, as shown by double immunohistochemical staining and by their differential abundance in subregions of the gastric mucosa. These results reinforce the notion of a prominent role for the endocannabinoid system in the gastric function in humans and postulate the use of cannabinoid CB1 receptors in parietal cells as new therapeutic targets for the regulation of gastric acid production.
Annals of Allergy Asthma & Immunology | 2007
Cristina Benito; E. González-Mancebo; M. Dolores Alonso Díaz de Durana; Rosa M. Tolón; Montserrat Fernandez-Rivas
BACKGROUND Coconut (Cocos nucifera) is a monocotyledonous plant of the Arecaceae family. Allergy to coconut is infrequent, with only 5 cases reported so far in the medical literature. OBJECTIVE To identify coconut allergens in 2 patients allergic to this food. METHODS We describe 2 patients allergic to coconut: an adult pollen-allergic patient monosensitized to coconut who presented with severe oropharyngeal symptoms and a child with a previous allergy to walnut, not allergic to pollen, who developed anaphylaxis on coconut ingestion. Both patients had positive skin prick test results and serum specific IgE (CAP) to coconut. IgE sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblotting was performed to identify the allergens involved, and a strong IgE binding band detected in both patients was further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS). Stability to pepsin digestion of the coconut extract and its cross-reactivity with tree nuts were studied. RESULTS An immunoblot showed an almost identical profile of IgE binding proteins in the coconut extract in both patients who reacted strongly to a band of approximately 29 kDa. The peptide analysis by MALDI-TOF MS of this band obtained the sequence GHGKREDPEKR. The protein with the highest correlation with this peptide was found to be a 7S globulin from Elaeis guineensis, another oil palm species also belonging to the Arecaceae family. The 29-kDa band was digested by pepsin in less than 1 minute. Cross-reactivity among coconut, walnut, and hazelnut was demonstrated by CAP inhibition in patient 2. CONCLUSION We have identified a 7S storage protein as a novel coconut allergen.
Neurobiology of Disease | 2015
Carmen Vázquez; Rosa M. Tolón; María Ruth Pazos; Marta Moreno; Erin C. Koester; Benjamin F. Cravatt; Cecilia J. Hillard; Julián Romero
Anandamide (AEA) is an endocannabinoid (EC) that modulates multiple functions in the CNS and that is released in areas of injury, exerting putative neuroprotective actions. In the present study, we have used intravital microscopy to analyze the role of the EC system in the glial response against an acute insult. Our data show that AEA modulates astroglial function in vivo by increasing connexin-43 hemichannel (HC) activity. Furthermore, the genetic inactivation of the AEA-degrading enzyme, fatty acid amide hydrolase (FAAH), also increased HC activity and enhanced the microglial response against an acute injury to the brain parenchyma, effects that were mediated by cannabinoid CB1 receptors. The contribution of ATP released through an astrocytic HC was critical for the microglial response, as this was prevented by the use of the HC blocker flufenamic acid and by apyrase. As could be expected, brain concentrations of AEA, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) were elevated in FAAH-null mice, while 2-arachidonoylglycerol (2-AG) concentrations remained unaltered. In summary, these findings demonstrate that AEA modifies glial functions by promoting an enhanced pro-inflammatory glial response in the brain.
Neurobiology of Aging | 2015
Carmen Vázquez; Rosa M. Tolón; M. Teresa Grande; Marina Caraza; Marta Moreno; Erin C. Koester; Borja Villaescusa; Lourdes Ruiz-Valdepeñas; Francisco Javier Fernández-Sánchez; Benjamin F. Cravatt; Cecilia J. Hillard; Julián Romero
The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimers disease (AD). We aimed to evaluate the effect of the pharmacologic and genetic inhibition of anandamide-degrading enzyme in a mouse model of AD (5xFAD). Pharmacologic inhibition of the fatty acid amide hydrolase (FAAH) had little impact on the expression of key enzymes and cytokines and also on the cognitive impairment, plaque deposition, and gliosis in 5xFAD mice. CB1 blockade exacerbated inflammation in this transgenic mouse model of AD. The genetic inactivation of FAAH led to increases in the expression of inflammatory cytokines. At the same time, FAAH-null 5xFAD mice exhibited a behavioral improvement in spatial memory that was independent of the level of anxiety and was not CB1 mediated. Finally, mice lacking FAAH showed diminished soluble amyloid levels, neuritic plaques, and gliosis. These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflamed brain.
The Journal of Neuroscience | 2003
Cristina Benito; Estefanía Núñez; Rosa M. Tolón; Erica J. Carrier; Alberto Rábano; Cecilia J. Hillard; Julián Romero