Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Berciu is active.

Publication


Featured researches published by Cristina Berciu.


Nature | 2012

Reconfigurable self-assembly through chiral control of interfacial tension

Thomas Gibaud; Edward Barry; Mark J. Zakhary; Mir Henglin; Andrew Ward; Yasheng Yang; Cristina Berciu; Rudolf Oldenbourg; Michael F. Hagan; Daniela Nicastro; Robert B. Meyer; Zvonimir Dogic

From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil–water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex topologies.


eLife | 2014

A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans

David B. Doroquez; Cristina Berciu; James R. Anderson; Piali Sengupta; Daniela Nicastro

Many primary sensory cilia exhibit unique architectures that are critical for transduction of specific sensory stimuli. Although basic ciliogenic mechanisms are well described, how complex ciliary structures are generated remains unclear. Seminal work performed several decades ago provided an initial but incomplete description of diverse sensory cilia morphologies in C. elegans. To begin to explore the mechanisms that generate these remarkably complex structures, we have taken advantage of advances in electron microscopy and tomography, and reconstructed three-dimensional structures of fifty of sixty sensory cilia in the C. elegans adult hermaphrodite at high resolution. We characterize novel axonemal microtubule organization patterns, clarify structural features at the ciliary base, describe new aspects of cilia–glia interactions, and identify structures suggesting novel mechanisms of ciliary protein trafficking. This complete ultrastructural description of diverse cilia in C. elegans provides the foundation for investigations into underlying ciliogenic pathways, as well as contributions of defined ciliary structures to specific neuronal functions. DOI: http://dx.doi.org/10.7554/eLife.01948.001


ACS Nano | 2013

Probing Nanoscale Self-Assembly of Nonfluorescent Small Molecules inside Live Mammalian Cells

Cristina Berciu; Yi Kuang; Junfeng Shi; Daniela Nicastro; Bing Xu

Like cellular proteins that form fibrillar nanostructures, small hydrogelator molecules self-assemble in water to generate molecular nanofibers. In contrast to the well-defined (dys)functions of endogenous protein filaments, the fate of intracellular assembly of small molecules remains largely unknown. Here we demonstrate the imaging of enzyme-triggered self-assembly of nonfluorescent small molecules by doping the molecular assemblies with a fluorescent hydrogelator. The cell fractionation experiments, fluorescent imaging, and electron microscopy indicate that the hydrogelators self-assemble and localize to the endoplasmic reticulum (ER) and are likely processed via the cellular secretory pathway (i.e., ER-Golgi-lysosomes/secretion). This work, as the first example of the use of correlative light and electron microscopy for probing the self-assembly of nonfluorescent small molecules inside live mammalian cells, not only establishes a general strategy to provide the spatiotemporal profile of the assemblies of small molecules inside cells but may lead to a new paradigm for regulating cellular functions based on the interactions between the assemblies of small molecules (e.g., molecular nanofibers) and subcellular organelles.


Chem | 2016

Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells

Jie Zhou; Xuewen Du; Cristina Berciu; Hongjian He; Junfeng Shi; Daniela Nicastro; Bing Xu

Alkaline phosphatase (ALP), an ectoenzyme, plays important roles in biology. But there is no activity probes for imaging ALPs in live cell environment due to the diffusion and cytotoxicity of current probes. Here we report the profiling of the activities of ALPs on live cells by enzyme-instructed self-assembly (EISA) of a D-peptidic derivative that forms fluorescent, non-diffusive nanofibrils. Our study reveals the significantly higher activities of ALP on cancer cells than on stromal cells in their co-culture and shows an inherent and dynamic difference in ALP activities between drug sensitive and resistant cancer cells or between cancer cells with and without hormonal stimulation. Being complementary to genomic profiling of cells, EISA, as a reaction-diffusion controlled process, achieves high spatiotemporal resolution for profiling activities of ALPs of live cells at single cell level. The activity probes of ALP contribute to understanding the reversible phosphorylation/dephosphorylation in the extracellular domains that is an emerging frontier in biomedicine.


Molecular Biology of the Cell | 2014

Critical roles for multiple formins during cardiac myofibril development and repair

Michelle Rosado; Cynthia F. Barber; Cristina Berciu; Steven Feldman; Susan J. Birren; Daniela Nicastro; Bruce L. Goode

Seven of 15 different mouse formins localized in diverse patterns to cardiomyocyte sarcomeres. Four were required for proper organization of myofibrils, and two were critical for remodeling and repair of myofibril structure.


Molecular Biology of the Cell | 2013

Formation of membrane ridges and scallops by the F-BAR protein Nervous Wreck

Agata N. Becalska; Charlotte F. Kelley; Cristina Berciu; T.B. Stanishneva-Konovalova; Xiaofeng Fu; Shiyu Wang; Olga S. Sokolova; Daniela Nicastro; Avital A. Rodal

Nwk is a neuronal F-BAR/SH3 protein that deforms membranes into positively curved ridges using a novel zigzag assembly of the crescent-shaped F-BAR domain. Membrane between adjacent ridges forms a negatively curved scallop that can be amplified by the cytoskeleton into cellular protrusions.


eLife | 2017

Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans

Inna V. Nechipurenko; Cristina Berciu; Piali Sengupta; Daniela Nicastro

The primary cilium is nucleated by the mother centriole-derived basal body (BB) via as yet poorly characterized mechanisms. BBs have been reported to degenerate following ciliogenesis in the C. elegans embryo, although neither BB architecture nor early ciliogenesis steps have been described in this organism. In a previous study (Doroquez et al., 2014), we described the three-dimensional morphologies of sensory neuron cilia in adult C. elegans hermaphrodites at high resolution. Here, we use serial section electron microscopy and tomography of staged C. elegans embryos to demonstrate that BBs remodel to support ciliogenesis in a subset of sensory neurons. We show that centriolar singlet microtubules are converted into BB doublets which subsequently grow asynchronously to template the ciliary axoneme, visualize degeneration of the centriole core, and define the developmental stage at which the transition zone is established. Our work provides a framework for future investigations into the mechanisms underlying BB remodeling. DOI: http://dx.doi.org/10.7554/eLife.25686.001


Communicative & Integrative Biology | 2015

Assembly of actin filaments and microtubules in Nwk F-BAR-induced membrane deformations

Charlotte F. Kelley; Agata N. Becalska; Cristina Berciu; Daniela Nicastro; Avital A. Rodal

F-BAR domains form crescent-shaped dimers that bind to and deform lipid bilayers, and play a role in many cellular processes requiring membrane remodeling, including endocytosis and cell morphogenesis. Nervous Wreck (NWK) encodes an F-BAR/SH3 protein that regulates synapse growth in Drosophila. Unlike conventional F-BAR proteins that assemble tip-to-tip into filaments and helical arrays around membrane tubules, the Nwk F-BAR domain instead assembles into zigzags, creating ridges and periodic scallops on membranes in vitro. In cells, this membrane deforming activity generates small buds, which can lengthen into extensive protrusions upon actin cytoskeleton polymerization. Here, we show that Nwk-induced cellular protrusions contain dynamic microtubules, distinguishing them from conventional filopodia, and further do not depend on actin filaments or microtubules for their maintenance. Our results indicate new ways in which close cooperation between the membrane remodeling and cytoskeletal machinery underlies large-scale changes in cellular morphology.


Molecular Therapy | 2018

Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis

Jie Zhou; Xuewen Du; Cristina Berciu; Steven J. Del Signore; Xiaoyi Chen; Natsuko Yamagata; Avital A. Rodal; Daniela Nicastro; Bing Xu

Most of the peptides used for promoting cellular uptake bear positive charges. In our previous study, we reported an example of taurine (bearing negative charges in physiological conditions) promoting cellular uptake of D-peptides. Taurine, conjugated to a small D-peptide via an ester bond, promotes the cellular uptake of this D-peptide. Particularly, intracellular carboxylesterase (CES) instructs the D-peptide to self-assemble and to form nanofibers, which largely disfavors efflux and further enhances the intracellular accumulation of the D-peptide, as supported by that the addition of CES inhibitors partially impaired cellular uptake of this molecule in mammalian cell lines. Using dynamin 1, 2, and 3 triple knockout (TKO) mouse fibroblasts, we demonstrated that cells took up this molecule via macropinocytosis and dynamin-dependent endocytosis. Imaging of Drosophila larval blood cells derived from endocytic mutants confirmed the involvement of multiple endocytosis pathways. Electron microscopy (EM) indicated that the precursors can form aggregates on the cell surface to facilitate the cellular uptake via macropinocytosis. EM also revealed significantly increased numbers of vesicles in the cytosol. This work provides new insights into the cellular uptake of taurine derivative for intracellular delivery and self-assembly of D-peptides.


MRS Proceedings | 2014

Supramolecular Self-Assembly Inside Living Mammalian Cells

Ryan C. Nieuwendaal; Boualem Hammouda; Cristina Berciu; Daniela Nicastro; Jack F. Douglas; Bing Xu; Ferenc Horkay

Collaboration


Dive into the Cristina Berciu's collaboration.

Top Co-Authors

Avatar

Daniela Nicastro

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge