Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Campestre is active.

Publication


Featured researches published by Cristina Campestre.


The Journal of Neuroscience | 2012

Matrix Metalloprotease 8-Dependent Extracellular Matrix Cleavage at the Blood–CSF Barrier Contributes to Lethality during Systemic Inflammatory Diseases

Roosmarijn E. Vandenbroucke; Eline Dejonckheere; Philippe Van Lint; Delphine Demeestere; Elien Van Wonterghem; Ineke Vanlaere; Leen Puimège; Filip Van Hauwermeiren; Riet De Rycke; Conor Mc Guire; Cristina Campestre; Carlos López-Otín; Patrick Matthys; Georges Leclercq; Claude Libert

Systemic inflammatory response syndrome (SIRS) is a highly mortal inflammatory disease, associated with systemic inflammation and organ dysfunction. SIRS can have a sterile cause or can be initiated by an infection, called sepsis. The prevalence is high, and available treatments are ineffective and mainly supportive. Consequently, there is an urgent need for new treatments. The brain is one of the first organs affected during SIRS, and sepsis and the consequent neurological complications, such as encephalopathy, are correlated with decreased survival. The choroid plexus (CP) that forms the blood–CSF barrier (BCSFB) is thought to act as a brain “immune sensor” involved in the communication between the peripheral immune system and the CNS. Nevertheless, the involvement of BCSFB integrity in systemic inflammatory diseases is seldom investigated. We report that matrix metalloprotease-8 (MMP8) depletion or inhibition protects mice from death and hypothermia in sepsis and renal ischemia/reperfusion. This effect could be attributed to MMP8-dependent leakage of the BCSFB, caused by collagen cleavage in the extracellular matrix of CP cells, which leads to a dramatic change in cellular morphology. Disruption of the BCSFB results in increased CSF cytokine levels, brain inflammation, and downregulation of the brain glucocorticoid receptor. This receptor is necessary for dampening the inflammatory response. Consequently, MMP8+/+ mice, in contrast to MMP8−/− mice, show no anti-inflammatory response and this results in high mortality. In conclusion, we identify MMP8 as an essential mediator in SIRS and, hence, a potential drug target. We also propose that the mechanism of action of MMP8 involves disruption of the BCSFB integrity.


Journal of Biological Chemistry | 2008

Collagenase-2 Deficiency or Inhibition Impairs Experimental Autoimmune Encephalomyelitis in Mice

Alicia R. Folgueras; Antonio Fueyo; Olivia García-Suárez; Jennifer H. Cox; Aurora Astudillo; Paolo Tortorella; Cristina Campestre; Ana Gutiérrez-Fernández; Miriam Fanjul-Fernández; Caroline J. Pennington; Dylan R. Edwards; Christopher M. Overall; Carlos López-Otín

Matrix metalloproteinases (MMPs) have been implicated in a variety of human diseases, including neuroimmunological disorders such as multiple sclerosis. However, the recent finding that some MMPs play paradoxical protective roles in these diseases has made necessary the detailed study of the specific function of each family member in their pathogenesis. To determine the relevance of collagenase-2 (MMP-8) in experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis, we have performed two different analyses involving genetic and biochemical approaches. First, we have analyzed the development of EAE in mutant mouse deficient in MMP-8, with the finding that the absence of this proteolytic enzyme is associated with a marked reduction in the clinical symptoms of EAE. We have also found that MMP-8-/- mice exhibit a marked reduction in central nervous system-infiltrating cells and demyelinating lesions. As a second approach, we have carried out a pharmacological inhibition of MMP-8 with a selective inhibitor against this protease (IC50 = 0.4 nm). These studies have revealed that the administration of the MMP-8 selective inhibitor to mice with EAE also reduces the severity of the disease. Based on these findings, we conclude that MMP-8 plays an important role in EAE development and propose that this enzyme may be a novel therapeutic target in human neuro-inflammatory diseases such as multiple sclerosis.


American Journal of Respiratory Cell and Molecular Biology | 2010

Absence or Inhibition of Matrix Metalloproteinase–8 Decreases Ventilator-Induced Lung Injury

Guillermo M. Albaiceta; Ana Gutiérrez-Fernández; Emilio García-Prieto; Xose S. Puente; Diego Parra; Aurora Astudillo; Cristina Campestre; Sandra Cabrera; Adrián González-López; Antonio Fueyo; Francisco Taboada; Carlos López-Otín

Mechanical ventilation is a life-saving therapy that can also damage the lungs. Ventilator-induced lung injury (VILI) promotes inflammation and up-regulates matrix metalloproteinases (MMPs). Among these enzymes, MMP-8 is involved in the onset of inflammation by processing different immune mediators. To clarify the role of MMP-8 in a model of VILI and their relevance as a therapeutic target, we ventilated wild-type and MMP-8-deficient mice with low or high pressures for 2 hours. There were no significant differences after low-pressure ventilation between wild-type and knockout animals. However, lack of MMP-8 results in better gas exchange, decreased lung edema and permeability, and diminished histological injury after high-pressure ventilation. Mmp8(-/-) mice had a different immune response to injurious ventilation, with decreased neutrophilic infiltration, lower levels of IFN-γ and chemokines (LPS-induced CXC chemokine, macrophage inflammatory protein-2), and significant increases in anti-inflammatory cytokines (IL-4, IL-10) in lung tissue and bronchoalveolar lavage fluid. There were no differences in MMP-2, MMP-9, or tissue inhibitor of metalloproteinase-1 between wild-type and knockout mice. These results were confirmed by showing a similar protective effect in wild-type mice treated with a selective MMP-8 inhibitor. We conclude that MMP-8 promotes acute inflammation after ventilation with high pressures, and its short-term inhibition could be a therapeutic goal to limit VILI.


ChemMedChem | 2011

Biphenyl Sulfonylamino Methyl Bisphosphonic Acids as Inhibitors of Matrix Metalloproteinases and Bone Resorption

Maria Teresa Rubino; Mariangela Agamennone; Cristina Campestre; Pietro Campiglia; Viviana Cremasco; Roberta Faccio; Antonio Laghezza; Fulvio Loiodice; Dariana Maggi; Emilia Panza; Armando Rossello; Paolo Tortorella

A number of matrix metalloproteinases (MMPs), proteins important in the balance of bone remodeling, play a critical role both in cancer metastasis and in bone matrix turnover associated with the presence of cancer cells in bone. Here, we report the synthesis and biological evaluation of a new class of MMP inhibitors characterized by a bisphosphonate function as the zinc binding group. Since the bisphosphonate group is also implicated in osteoclast inhibition and provides a preferential affinity to biological apatite, the new molecules can be regarded as bone‐seeking medicinal agents. Docking experiments were performed to clarify the mode of binding of bisphosphonate inhibitors in the active site of MMP‐2. The most promising of the studied bisphosphonates showed nanomolar inhibition against MMP‐2 and resulted in potent inhibition of osteoclastic bone resorption in vitro.


ChemMedChem | 2009

Synthesis, SAR, and Biological Evaluation of α-Sulfonylphosphonic Acids as Selective Matrix Metalloproteinase Inhibitors

Maria Teresa Rubino; Mariangela Agamennone; Cristina Campestre; Giuseppe Fracchiolla; Antonio Laghezza; Fulvio Loiodice; Elisa Nuti; Armando Rossello; Paolo Tortorella

Selective MMP inhibitors: Eleven α‐sulfonylphosphonates were synthesized and tested as MMP inhibitors. The IC50 values for most of them are in the nanomolar range against MMP‐2, ‐8, ‐13, and ‐14, with an interesting selectivity profile versus MMP‐9.


Journal of Medicinal Chemistry | 2012

The cis-4-Amino-l-proline Residue as a Scaffold for the Synthesis of Cyclic and Linear Endomorphin-2 Analogues

Adriano Mollica; Francesco Pinnen; Azzurra Stefanucci; Federica Feliciani; Cristina Campestre; Luisa Mannina; Anatoly P. Sobolev; Gino Lucente; Peg Davis; Josephine Lai; Shou Wu Ma; Frank Porreca; Victor J. Hruby

Endomorphin-2 (EM-2: Tyr-Pro-Phe-Phe-NH(2)) is an endogenous tetrapeptide that combines potency and efficacy with high affinity and selectivity toward the μ opioid receptor, the most responsible for analgesic effects in the central nervous system. The presence of the Pro(2) represents a crucial factor for the ligand structural and conformational properties. Proline is in fact an efficient stereochemical spacer, capable of inducing favorable spatial orientation of aromatic rings, a key factor for ligand recognition and interaction with receptors. Here the Pro(2) has been replaced by 4(S)-NH(2)-2(S)-proline (cAmp), a proline/GABA cis-chimera residue. This bivalent amino acid maintains the capacity to influenc the tetrapeptide conformation and offers the opportunity to generate new linear models and unusually constrained cyclic analogues characterized by an N-terminal Tyr bearing a free α-amino group. The results indicate that the new analogues do not show affinity for both δ and κ opioid receptors and bind only poorly to the μ receptors (for cyclopeptide 9: K(i)(μ) = 660 nM; GPI (IC(50)) = 1.4% at 1 μM; for linear tetrapeptide acid 13: K(i)(μ) = 2000 nM; GPI (IC(50)) = 0% at 1 μM; for linear tetrapeptide amide 15: K(i)(μ) = 310 nM; GPI (IC(50)) = 894 nM).


Journal of Enzyme Inhibition and Medicinal Chemistry | 2017

Analysis of imidazoles and triazoles in biological samples after MicroExtraction by packed sorbent

Cristina Campestre; Marcello Locatelli; Paolo Guglielmi; Elisa De Luca; Giuseppe Bellagamba; Sergio Menta; Gokhan Zengin; Christian Celia; Luisa Di Marzio; Simone Carradori

Abstract This paper reports the MEPS-HPLC-DAD method for the simultaneous determination of 12 azole drugs (bifonazole, butoconazole, clotrimazole, econazole, itraconazole, ketoconazole, miconazole, posaconazole, ravuconazole, terconazole, tioconazole and voriconazole) administered to treat different systemic and topical fungal infections, in biological samples. Azole drugs separation was performed in 36 min. The analytical method was validated in the ranges as follows: 0.02–5 μg mL−1 for ravuconazole; 0.2–5 μg mL−1 for terconazole; 0.05–5 μg mL−1 for the other compounds. Human plasma and urine were used as biological samples during the analysis, while benzyl-4-hydroxybenzoate was used as an internal standard. The precision (RSD%) and trueness (Bias%) values fulfill with International Guidelines requirements. To the best of our knowledge, this is the first HPLC-DAD procedure coupled to MEPS, which provides the simultaneous analysis of 12 azole drugs, available in the market, in human plasma and urine. Moreover, the method was successfully applied for the quantitative determination of two model drugs (itraconazole and miconazole) after oral administration in real samples. Graphical Abstract


Current Drug Targets | 2015

Phosphonate Emerging Zinc Binding Group in Matrix Metalloproteinase Inhibitors.

Cristina Campestre; Mariangela Agamennone; Marilena Tauro; Paolo Tortorella

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases, capable to degrade the extracellular matrix (ECM) in physiologic conditions. Because of their overexpression and pivotal role in many pathological events, they have been proposed as a therapeutic and prognostic target for a number of diseases. Selectivity among MMPs is essential for realizing the clinical potential of inhibitors. The design of MMP inhibitors (MMPIs) has largely focused on development of various compounds containing a zinc binding group (ZBG) in their structure, with hydroxamate being the most potent one. Due to the high degree of homology in the catalytic domain of all the MMPs, the specificity and selectivity of first generation hydroxamate MMPIs were minimal, with several off-target effects and binding to other metzincins. This review highlights the role of phosphonate as ZBG in the design and development of new MMPIs.


Molecules | 2018

Qualitative and Quantitative Phytochemical Analysis of Different Extracts from Thymus algeriensis Aerial Parts

Nassima Boutaoui; Lahcene Zaiter; Fadila Benayache; Samir Benayache; Simone Carradori; Stefania Cesa; Anna Maria Giusti; Cristina Campestre; Luigi Menghini; Denise Innosa; Marcello Locatelli

This study was performed to evaluate the metabolite recovery from different extraction methods applied to Thymus algeriensis aerial parts. A high-performance liquid chromatographic method using photodiode array detector with gradient elution has been developed and validated for the simultaneous estimation of different phenolic compounds in the extracts and in their corresponding purified fractions. The experimental results show that microwave-assisted aqueous extraction for 15 min at 100 °C gave the most phenolics-enriched extract, reducing extraction time without degradation effects on bioactives. Sixteen compounds were identified in this extract, 11 phenolic compounds and five flavonoids, all known for their biological activities. Color analysis and determination of chlorophylls and carotenoids implemented the knowledge of the chemical profile of this plant.


Molecules | 2018

A Comparative Assessment of Biological Effects and Chemical Profile of Italian Asphodeline lutea Extracts

Dora Melucci; Marcello Locatelli; Clinio Locatelli; Alessandro Zappi; Francesco De Laurentiis; Simone Carradori; Cristina Campestre; Lidia Leporini; Gokhan Zengin; Carene Marie Nancy Picot; Luigi Menghini; Mohamad Fawzi Mahomoodally

The present study aims to highlight the therapeutic potential of Asphodeline lutea (AL), a wild edible plant of the Mediterranean diet. Roots, aerial parts, and flowers of AL at two different phenological stages were collected from three locations in Italy. The inhibitory activities of extracts on strategic enzymes linked to human diseases were assessed. The antioxidant properties were evaluated in vitro, using six standard bioassays. The phenolic and anthraquinone profiles were also established using HPLC-PDA. Zinc, cadmium, lead, and copper contents were also determined. All the samples inhibited acetylcholinesterase (from 1.51 to 2.20 mg GALAEs/g extract), tyrosinase (from 7.50 to 25.3 mg KAEs/g extract), and α-amylase (from 0.37 to 0.51 mmol ACAEs/g extract). Aloe-emodin and physcion were present in all parts, while rhein was not detected. The phenolic profile and the heavy metals composition of specimens gathered from three different regions of Italy were different. It can be argued that samples collected near the street can contain higher concentrations of heavy metals. The experimental data confirm that the A. lutea species could be considered as a potential source of bioactive metabolites, and its consumption could play a positive and safe role in human health maintenance.

Collaboration


Dive into the Cristina Campestre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlo Gallina

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcello Locatelli

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simone Carradori

University of Chieti-Pescara

View shared research outputs
Researchain Logo
Decentralizing Knowledge