Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Federici is active.

Publication


Featured researches published by Cristina Federici.


Journal of Biological Chemistry | 2009

Microenvironmental pH is a key factor for exosome traffic in tumor cells.

Isabella Parolini; Cristina Federici; Carla Raggi; Luana Lugini; Simonetta Palleschi; Angelo De Milito; Carolina Coscia; Elisabetta Iessi; Mariantonia Logozzi; Agnese Molinari; Marisa Colone; Massimo Tatti; Massimo Sargiacomo; Stefano Fais

Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.


PLOS ONE | 2009

High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

Mariantonia Logozzi; Angelo De Milito; Luana Lugini; Martina Borghi; Luana Calabrò; Massimo Spada; Maurizio Perdicchio; Maria Lucia Marino; Cristina Federici; Elisabetta Iessi; Daria Brambilla; Giulietta Venturi; Francesco Lozupone; Mario Santinami; Veronica Huber; Michele Maio; Licia Rivoltini; Stefano Fais

Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.


PLOS ONE | 2014

Exosome Release and Low pH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin

Cristina Federici; Francesco Petrucci; Stefano Caimi; Albino Cesolini; Mariantonia Logozzi; Martina Borghi; Sonia D'Ilio; Luana Lugini; N. Violante; Tommaso Azzarito; Costanza Majorani; Daria Brambilla; Stefano Fais

Intrinsic resistance to cytotoxic drugs has been a main issue in cancer therapy for decades. Microenvironmental acidity is a simple while highly efficient mechanism of chemoresistance, exploited through impairment of drug delivery. The latter is achieved by extracellular protonation and/or sequestration into acidic vesicles. This study investigates the importance of extracellular acidosis and nanovesicle (exosome) release in the resistance of human tumour cell to cisplatin (CisPt); in parallel to proton pump inhibitors (PPI) ability of interfering with these tumour cell features. The results showed that CisPt uptake by human tumour cells was markedly impaired by low pH conditions. Moreover, exosomes purified from supernatants of these cell cultures contained various amounts of CisPt, which correlated to the pH conditions of the culture medium. HPLC-Q-ICP-MS analysis revealed that exosome purified from tumour cell culture supernatants contained CisPt in its native form. PPI pre-treatment increased cellular uptake of CisPt, as compared to untreated cells, in an acidic-depend manner. Furthermore, it induced a clear inhibition of exosome release by tumour cells. Human tumours obtained from xenografts pretreated with PPI contained more CisPt as compared to tumours from xenografts treated with CisPt alone. Further analysis showed that in vivo PPI treatment induced a clear reduction in the plasmatic levels of tumour-derived exosomes which also contained lower level of CisPt. Altogether, these findings point to the identification of a double mechanism that human malignant melanoma use in resisting to a dreadful cellular poison such as cisplatin. This framework of resistance includes both low pH-dependent extracellular sequestration and an exosome-mediated elimination. Both mechanisms are markedly impaired by proton pump inhibition, leading to an increased CisPt-dependent cytotoxicity.


Cancer Research | 2004

Effect Of Human Natural Killer and γδ T Cells on the Growth of Human Autologous Melanoma Xenografts in SCID Mice

Francesco Lozupone; Daniela Pende; Vito L. Burgio; Chiara Castelli; Massimo Spada; Massimo Venditti; Francesca Luciani; Luana Lugini; Cristina Federici; Carlo Ramoni; Licia Rivoltini; Giorgio Parmiani; Filippo Belardelli; Paola Rivera; Stefania Marcenaro; Lorenzo Moretta; Stefano Fais

Natural killer (NK) cells were first identified for their ability to kill tumor cells of different origin in vitro. Similarly, γδ T lymphocytes display strong cytotoxic activity against various tumor cell lines. However, the ability of both the NK and γδ cells to mediate natural immune response against human malignant tumors in vivo is still poorly defined. Severe combined immunodeficient (SCID) mice have been successfully engrafted with human tumors. In this study, the antitumor effect of local as well as of systemic treatments based on NK cells or Vδ1 or Vδ2 γ/δ T lymphocytes against autologous melanoma cells was investigated in vivo. The results show that all three of the populations were effective in preventing growth of autologous human melanomas when both tumor and lymphoid cells were s.c. inoculated at the same site. However, when lymphoid cells were infused i.v., only NK cells and Vδ1 γ/δ T lymphocytes could either prevent or inhibit the s.c. growth of autologous melanoma. Accordingly, both NK cells and Vδ1 γδ T lymphocytes could be detected at the s.c. tumor site. In contrast, Vδ2 γδ T lymphocytes were only detectable in the spleen of the SCID mice. Moreover, NK cells maintained their inhibitory effect on tumor growth even after discontinuation of the treatment. Indeed they were present at the tumor site for a longer period. These data support the possibility to exploit NK cells and Vδ1 γδ T lymphocytes in tumor immunotherapy. Moreover, our study emphasizes the usefulness of human tumor/SCID mouse models for preclinical evaluation of immunotherapy protocols against human tumors.


Journal of Immunology | 2007

Potential Role for IL-7 in Fas-Mediated T Cell Apoptosis During HIV Infection

Caroline Fluur; Angelo De Milito; Terry J. Fry; Nancy Vivar; Liv Eidsmo; Ann Atlas; Cristina Federici; Paola Matarrese; Mariantonia Logozzi; Éva Rajnavölgyi; Crystal L. Mackall; Stefano Fais; Francesca Chiodi; Bence Rethi

IL-7 promotes survival of resting T lymphocytes and induces T cell proliferation in lymphopenic conditions. As elevated IL-7 levels occur in HIV-infected individuals in addition to high Fas expression on T cells and increased sensitivity to Fas-induced apoptosis, we analyzed whether IL-7 has a regulatory role in Fas-mediated T cell apoptosis. We show that IL-7 up-regulates Fas expression on naive and memory T cells through a mechanism that involves translocation of Fas molecules from intracellular compartments to the cell membrane. IL-7 induced the association of Fas with the cytoskeletal component ezrin and a polarized Fas expression on the cell surface. The potential role of IL-7 in Fas up-regulation in vivo was verified in IL-7-treated macaques and in HIV-infected or chemotherapy treated patients by the correlation between serum IL-7 levels and Fas expression on T cells. IL-7 treatment primed T cells for Fas-induced apoptosis in vitro and serum IL-7 levels correlated with the sensitivity of T cells to Fas-induced apoptosis in HIV-infected individuals. Our data suggest an important role for IL-7 in Fas-mediated regulation of T cell homeostasis. Elevated IL-7 levels associated with lymphopenic conditions, including HIV-infection, might participate in the increased sensitivity of T cells for activation-induced apoptosis.


Journal of Biological Chemistry | 2004

Identification and Relevance of the CD95-binding Domain in the N-terminal Region of Ezrin

Francesco Lozupone; Luana Lugini; Paola Matarrese; Francesca Luciani; Cristina Federici; Elisabetta Iessi; Paola Margutti; Giorgio Stassi; Walter Malorni; Stefano Fais

The CD95 (Fas/APO-1) linkage to the actin cytoskeleton through ezrin is an essential requirement for susceptibility to the CD95-mediated apoptosis in CD4+ T cells. We have previously shown that moesin was not involved in the binding to CD95. Here we further support the specificity of the ezrin/CD95 binding, showing that radixin did not bind CD95. The ezrin region specifically and directly involved in the binding to CD95 was located in the middle lobe of the ezrin FERM domain, between amino acids 149 and 168. In this region, ezrin, radixin, and moesin show 60–65% identity, as compared with the 86% identity in the whole FERM domain. Transfection of two different human cell lines with a green fluorescent protein-tagged ezrin mutated in the CD95-binding epitope, induced a marked inhibition of CD95-mediated apoptosis. In these cells, the mutated ezrin did not co-localize or co-immunoprecipitate with CD95. Further analysis showed that the mutated ezrin, while unable to bind CD95, was fully able to bind actin, thus preventing the actin linkage to CD95. Altogether, our results support the specificity of ezrin in the association to CD95 and the importance of the ezrin-to-CD95 linkage in CD95-mediated apoptosis. Moreover, this study suggests that a major role of ezrin is to connect CD95 to actin, thus allowing the CD95 polarization on the cells and the occurrence of the following multiple cascades of the CD95 pathway.


Biological Chemistry | 2013

Exosomes: the ideal nanovectors for biodelivery

Stefano Fais; Mariantonia Logozzi; Luana Lugini; Cristina Federici; Tommaso Azzarito; Natasa Zarovni; Antonio Chiesi

Abstract Nanomedicine aims to exploit the improved and often novel physical, chemical, and biological properties of materials at the nanometric scale, possibly with the highest level of biomimetism, an approach that simulates what occurs in nature. Although extracellularly released vesicles include both microvesicles (MVs) and exosomes, only exosomes have the size that may be considered suitable for potential use in nanomedicine. In fact, recent reports have shown that exosomes are able to interact with target cells within an organ or at a distance using different mechanisms. Much is yet to be understood about exosomes, and currently, we are looking at the visible top of an iceberg, with most of what we have to understand on these nanovesicles still under the sea. In fact, we know that exosomes released by normal cells always trigger positive effects, whereas those released by cells in pathological condition, such as tumor or infected cells, may induce undesired, dangerous, and mostly unknown effects, but we cannot exclude the possibility that exosomes may also be detrimental for the body in normal conditions. However, whether we consider extracellular vesicles as a whole, thus including MVs, it appears that even in normal conditions, extracellular vesicles may lead to unwanted effects, depending on gender and age. This review aims to critically emphasize existing data in the literature that support the possible roles of exosomes in both diagnostic and therapeutic scopes.


EMBO Reports | 2009

The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells

Francesco Lozupone; Maurizio Perdicchio; Daria Brambilla; Martina Borghi; Stefania Meschini; Stefano Barca; Maria Lucia Marino; Mariantonia Logozzi; Cristina Federici; Elisabetta Iessi; Angelo De Milito; Stefano Fais

Tumour cannibalism is a characteristic of malignancy and metastatic behaviour. This atypical phagocytic activity is a crucial survival option for tumours in conditions of low nutrient supply, and has some similarities to the phagocytic activity of unicellular microorganisms. In fact, Dictyostelium discoideum has been used widely as a model to study phagocytosis. Recently, phg1A has been described as a protein that is primarily involved in the phagocytic process of this microorganism. The closest human homologue to phg1A is transmembrane 9 superfamily protein member 4 (TM9SF4). Here, we report that TM9SF4 is highly expressed in human malignant melanoma cells deriving from metastatic lesions, whereas it is undetectable in healthy human tissues and cells. TM9SF4 is predominantly expressed in acidic vesicles of melanoma cells, in which it co‐localizes with the early endosome antigens Rab5 and early endosome antigen 1. TM9SF4 silencing induced marked inhibition of cannibal activity, which is consistent with a derangement of intracellular pH gradients, with alkalinization of acidic vesicles and acidification of the cell cytosol. We propose TM9SF4 as a new marker of malignancy, representing a potential new target for anti‐tumour strategies with a specific role in tumour cannibalism and in the establishment of a metastatic phenotype.


International Journal of Cancer | 2012

P‐glycoprotein binds to ezrin at amino acid residues 149–242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma

Daria Brambilla; Silvia Zamboni; Cristina Federici; Luana Lugini; Francesco Lozupone; Angelo De Milito; Serena Cecchetti; Maurizio Cianfriglia; Stefano Fais

Overexpression of the mdr1 gene encoding P‐glycoprotein (Pgp) exerts a major role in reducing the effectiveness of cytotoxic therapy in osteosarcoma. The interaction between actin and Pgp has been shown to be instrumental in the establishment of multidrug resistance (MDR) in human tumor cells. The cytoskeleton linker ezrin exerts a pivotal role in maintaining the functional connection between actin and Pgp. We investigated the role of ezrin in a human multidrug‐resistant osteosarcoma cell line overexpressing Pgp and compared it to its counterpart that overexpresses an ezrin deletion mutant. The results showed that Pgp binds at amino acid residues 149–242 of the N‐terminal domain of ezrin. The interaction between ezrin and Pgp occurs in the plasma membrane of MDR cells, where they also co‐localize with the ganglioside GM1 located in lipid rafts. The overexpression of the ezrin deletion mutant entirely restored drug susceptibility of osteosarcoma cells, consistent with Pgp dislocation to cytoplasmic compartments and abrogation of GM1/Pgp co‐localization at the plasma membrane. Our study provides evidence that ezrin exerts a key role in MDR of human osteosarcoma cells through a Pgp‐ezrin‐actin connection that is instrumental for the permanence of Pgp into plasma membrane lipid rafts. We also show for the first time that Pgp‐binding site is localized to amino acid residues 149–242 of the ezrin Band 4.1, Ezrin/Radixin/Moesin (FERM) domain, thus proposing a specific target for future molecular therapy aimed at counteracting MDR in osteosarcoma patients.


International Journal of Cancer | 2009

Pleiotropic function of ezrin in human metastatic melanomas

Cristina Federici; Daria Brambilla; Francesco Lozupone; Paola Matarrese; Angelo De Milito; Luana Lugini; Elisabetta Iessi; Serena Cecchetti; Marialucia Marino; Maurizio Perdicchio; Mariantonia Logozzi; Massimo Spada; Walter Malorni; Stefano Fais

The membrane cytoskeleton cross‐linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N‐terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp‐1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp‐1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors.

Collaboration


Dive into the Cristina Federici's collaboration.

Top Co-Authors

Avatar

Stefano Fais

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Luana Lugini

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Iessi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mariantonia Logozzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Francesco Lozupone

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tommaso Azzarito

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Daria Brambilla

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Martina Borghi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Enrico P. Spugnini

Istituto Superiore di Sanità

View shared research outputs
Researchain Logo
Decentralizing Knowledge