Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Luana Lugini is active.

Publication


Featured researches published by Luana Lugini.


Journal of Experimental Medicine | 2002

Induction of Lymphocyte Apoptosis by Tumor Cell Secretion of FasL-bearing Microvesicles

Giovanna Andreola; Licia Rivoltini; Chiara Castelli; Veronica Huber; Paola Perego; Paola Deho; Paola Squarcina; Paola Accornero; Francesco Lozupone; Luana Lugini; Annarita Stringaro; Agnese Molinari; Giuseppe Arancia; Massimo Gentile; Giorgio Parmiani; Stefano Fais

The hypothesis that FasL expression by tumor cells may impair the in vivo efficacy of antitumor immune responses, through a mechanism known as ‘Fas tumor counterattack,’ has been recently questioned, becoming the object of an intense debate based on conflicting results. Here we definitely show that FasL is indeed detectable in the cytoplasm of melanoma cells and its expression is confined to multivesicular bodies that contain melanosomes. In these structures FasL colocalizes with both melanosomal (i.e., gp100) and lysosomal (i.e., CD63) antigens. Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells. We additionally show that melanosome-containing multivesicular bodies degranulate extracellularly and release FasL-bearing microvesicles, that coexpress both gp100 and CD63 and retain their functional activity in triggering Fas-dependent apoptosis of lymphoid cells. Hence our data provide evidence for a novel mechanism potentially operating in Fas tumor counterattack through the secretion of subcellular particles expressing functional FasL. Such vesicles may form a sort of front line hindering lymphocytes and other immunocompetent cells from entering neoplastic lesions and exert their antitumor activity.


Journal of Biological Chemistry | 2009

Microenvironmental pH is a key factor for exosome traffic in tumor cells.

Isabella Parolini; Cristina Federici; Carla Raggi; Luana Lugini; Simonetta Palleschi; Angelo De Milito; Carolina Coscia; Elisabetta Iessi; Mariantonia Logozzi; Agnese Molinari; Marisa Colone; Massimo Tatti; Massimo Sargiacomo; Stefano Fais

Exosomes secreted by normal and cancer cells carry and deliver a variety of molecules. To date, mechanisms referring to tumor exosome trafficking, including release and cell-cell transmission, have not been described. To gain insight into this, exosomes purified from metastatic melanoma cell medium were labeled with a lipid fluorescent probe, R18, and analyzed by spectrofluorometry and confocal microscopy. A low pH condition is a hallmark of tumor malignancy, potentially influencing exosome release and uptake by cancer cells. Using different pH conditions as a modifier of exosome traffic, we showed (i) an increased exosome release and uptake at low pH when compared with a buffered condition and (ii) exosome uptake by melanoma cells occurred by fusion. Membrane biophysical analysis, such as fluidity and lipid composition, indicated a high rigidity and sphingomyelin/ganglioside GM3 (N-acetylneuraminylgalactosylglucosylceramide) content in exosomes released at low pH. This was likely responsible for the increased fusion efficiency. Consistent with these results, pretreatment with proton pump inhibitors led to an inhibition of exosome uptake by melanoma cells. Fusion efficiency of tumor exosomes resulted in being higher in cells of metastatic origin than in those derived from primary tumors or normal cells. Furthermore, we found that caveolin-1, a protein involved in melanoma progression, is highly delivered through exosomes released in an acidic condition. The results of our study provide the evidence that exosomes may be used as a delivery system for paracrine diffusion of tumor malignancy, in turn supporting the importance of both exosomes and tumor pH as key targets for future anti-cancer strategies.


PLOS ONE | 2009

High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

Mariantonia Logozzi; Angelo De Milito; Luana Lugini; Martina Borghi; Luana Calabrò; Massimo Spada; Maurizio Perdicchio; Maria Lucia Marino; Cristina Federici; Elisabetta Iessi; Daria Brambilla; Giulietta Venturi; Francesco Lozupone; Mario Santinami; Veronica Huber; Michele Maio; Licia Rivoltini; Stefano Fais

Background Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. Methodology/Principal Findings We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504±315) or caveolin-1 (619±310) were significantly increased in melanoma patients as compared to healthy donors (223±125 and 228±102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. Conclusions/Significance We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.


Cancer Research | 2007

Proton Pump Inhibitors Induce Apoptosis of Human B-Cell Tumors through a Caspase-Independent Mechanism Involving Reactive Oxygen Species

Angelo De Milito; Elisabetta Iessi; Mariantonia Logozzi; Francesco Lozupone; Massimo Spada; Maria Lucia Marino; Cristina Federici; Maurizio Perdicchio; Paola Matarrese; Luana Lugini; Anna Nilsson; Stefano Fais

Proton pumps like the vacuolar-type H+ ATPase (V-ATPase) are involved in the control of cellular pH in normal and tumor cells. Treatment with proton pump inhibitors (PPI) induces sensitization of cancer cells to chemotherapeutics via modifications of cellular pH gradients. It is also known that low pH is the most suitable condition for a full PPI activation. Here, we tested whether PPI treatment in unbuffered culture conditions could affect survival and proliferation of human B-cell tumors. First, we showed that PPI treatment increased the sensitivity to vinblastine of a pre-B acute lymphoblastic leukemia (ALL) cell line. PPI, per se, induced a dose-dependent inhibition of proliferation of tumor B cells, which was associated with a dose- and time-dependent apoptotic-like cytotoxicity in B-cell lines and leukemic cells from patients with pre-B ALL. The effect of PPI was mediated by a very early production of reactive oxygen species (ROS), that preceded alkalinization of lysosomal pH, lysosomal membrane permeabilization, and cytosol acidification, suggesting an early destabilization of the acidic vesicular compartment. Lysosomal alterations were followed by mitochondrial membrane depolarization, release of cytochrome c, chromatin condensation, and caspase activation. However, inhibition of caspase activity did not affect PPI-induced cell death, whereas specific inhibition of ROS by an antioxidant (N-acetylcysteine) significantly delayed cell death and protected both lysosomal and mitochondrial membranes. The proapoptotic activity of PPI was consistent with a clear inhibition of tumor growth following PPI treatment of B-cell lymphoma in severe combined immunodeficient mice. This study further supports the importance of acidity and pH gradients in tumor cell homeostasis and suggests new therapeutic approaches for human B-cell tumors based on PPI.


PLOS ONE | 2014

Exosome Release and Low pH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin

Cristina Federici; Francesco Petrucci; Stefano Caimi; Albino Cesolini; Mariantonia Logozzi; Martina Borghi; Sonia D'Ilio; Luana Lugini; N. Violante; Tommaso Azzarito; Costanza Majorani; Daria Brambilla; Stefano Fais

Intrinsic resistance to cytotoxic drugs has been a main issue in cancer therapy for decades. Microenvironmental acidity is a simple while highly efficient mechanism of chemoresistance, exploited through impairment of drug delivery. The latter is achieved by extracellular protonation and/or sequestration into acidic vesicles. This study investigates the importance of extracellular acidosis and nanovesicle (exosome) release in the resistance of human tumour cell to cisplatin (CisPt); in parallel to proton pump inhibitors (PPI) ability of interfering with these tumour cell features. The results showed that CisPt uptake by human tumour cells was markedly impaired by low pH conditions. Moreover, exosomes purified from supernatants of these cell cultures contained various amounts of CisPt, which correlated to the pH conditions of the culture medium. HPLC-Q-ICP-MS analysis revealed that exosome purified from tumour cell culture supernatants contained CisPt in its native form. PPI pre-treatment increased cellular uptake of CisPt, as compared to untreated cells, in an acidic-depend manner. Furthermore, it induced a clear inhibition of exosome release by tumour cells. Human tumours obtained from xenografts pretreated with PPI contained more CisPt as compared to tumours from xenografts treated with CisPt alone. Further analysis showed that in vivo PPI treatment induced a clear reduction in the plasmatic levels of tumour-derived exosomes which also contained lower level of CisPt. Altogether, these findings point to the identification of a double mechanism that human malignant melanoma use in resisting to a dreadful cellular poison such as cisplatin. This framework of resistance includes both low pH-dependent extracellular sequestration and an exosome-mediated elimination. Both mechanisms are markedly impaired by proton pump inhibition, leading to an increased CisPt-dependent cytotoxicity.


Journal of Immunology | 2012

Immune Surveillance Properties of Human NK Cell-Derived Exosomes

Luana Lugini; Serena Cecchetti; Veronica Huber; Francesca Luciani; Gianfranco Macchia; Francesca Spadaro; Luisa Paris; Laura Abalsamo; Marisa Colone; Agnese Molinari; Franca Podo; Licia Rivoltini; Carlo Ramoni; Stefano Fais

Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by “normal” cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.


Cancer Research | 2004

Effect Of Human Natural Killer and γδ T Cells on the Growth of Human Autologous Melanoma Xenografts in SCID Mice

Francesco Lozupone; Daniela Pende; Vito L. Burgio; Chiara Castelli; Massimo Spada; Massimo Venditti; Francesca Luciani; Luana Lugini; Cristina Federici; Carlo Ramoni; Licia Rivoltini; Giorgio Parmiani; Filippo Belardelli; Paola Rivera; Stefania Marcenaro; Lorenzo Moretta; Stefano Fais

Natural killer (NK) cells were first identified for their ability to kill tumor cells of different origin in vitro. Similarly, γδ T lymphocytes display strong cytotoxic activity against various tumor cell lines. However, the ability of both the NK and γδ cells to mediate natural immune response against human malignant tumors in vivo is still poorly defined. Severe combined immunodeficient (SCID) mice have been successfully engrafted with human tumors. In this study, the antitumor effect of local as well as of systemic treatments based on NK cells or Vδ1 or Vδ2 γ/δ T lymphocytes against autologous melanoma cells was investigated in vivo. The results show that all three of the populations were effective in preventing growth of autologous human melanomas when both tumor and lymphoid cells were s.c. inoculated at the same site. However, when lymphoid cells were infused i.v., only NK cells and Vδ1 γ/δ T lymphocytes could either prevent or inhibit the s.c. growth of autologous melanoma. Accordingly, both NK cells and Vδ1 γδ T lymphocytes could be detected at the s.c. tumor site. In contrast, Vδ2 γδ T lymphocytes were only detectable in the spleen of the SCID mice. Moreover, NK cells maintained their inhibitory effect on tumor growth even after discontinuation of the treatment. Indeed they were present at the tumor site for a longer period. These data support the possibility to exploit NK cells and Vδ1 γδ T lymphocytes in tumor immunotherapy. Moreover, our study emphasizes the usefulness of human tumor/SCID mouse models for preclinical evaluation of immunotherapy protocols against human tumors.


Laboratory Investigation | 2003

Potent phagocytic activity discriminates metastatic and primary human malignant melanomas: a key role of ezrin.

Luana Lugini; Francesco Lozupone; Paola Matarrese; Cristina Funaro; Francesca Luciani; Walter Malorni; Licia Rivoltini; Chiara Castelli; Antonella Tinari; Adriano Piris; Giorgio Parmiani; Stefano Fais

Features of phagocytosis have been observed in human tumors, but the phagocytic apparatus of tumor cells and the mechanism(s) underlying this phenomenon have yet to be defined. To address the phenomenon of phagocytosis, its underlying mechanism(s), and its possible role in tumor biology, we used human melanoma cells as a prototypic model. Our results showed that a process of phagocytosis of apoptotic cells occurs in vivo in human melanoma. This finding was consistent with evidence that human melanoma cells in vitro express all of the known lysosomal and phagocytic markers on their cytoplasmic vesicles and that a process of phagocytosis occurs in these vesicles. However, exclusively human melanoma cells deriving from metastatic lesions possess an efficient phagocytic machinery responsible for a macrophage-like activity against latex beads, yeast, and apoptotic cells of different origins, which was comparable to that of human primary macrophages. Moreover, the actin-binding protein ezrin was expressed on phagocytic vacuoles of melanoma cells and of cells deriving from a human adenocarcinoma; both treatment with cytochalasin B and specific inhibition of ezrin synthesis strongly affected the phagocytic activity of melanoma cells. This suggests that the association with the actin cytoskeleton is a crucial requirement for the development of this phenomenon. Hence our data provide evidence for a potent phagocytic activity exerted by metastatic melanoma cells possibly involved in determining the level of aggressiveness of human melanoma. This suggests that the assessment of phagocytic activity may be exploited as a new tool to evaluate the malignancy of human melanoma. Moreover, our data suggest that gene therapy or drug treatments aimed at inhibiting actin assembly to the phagosomal membranes may be proposed as a new strategy for the control of tumor aggressiveness.


PLOS ONE | 2014

Soma-to-Germline Transmission of RNA in Mice Xenografted with Human Tumour Cells: Possible Transport by Exosomes

Cristina Cossetti; Luana Lugini; Letizia Astrologo; Isabella Saggio; Stefano Fais; Corrado Spadafora

Mendelian laws provide the universal founding paradigm for the mechanism of genetic inheritance through which characters are segregated and assorted. In recent years, however, parallel with the rapid growth of epigenetic studies, cases of inheritance deviating from Mendelian patterns have emerged. Growing studies underscore phenotypic variations and increased risk of pathologies that are transgenerationally inherited in a non-Mendelian fashion in the absence of any classically identifiable mutation or predisposing genetic lesion in the genome of individuals who develop the disease. Non-Mendelian inheritance is most often transmitted through the germline in consequence of primary events occurring in somatic cells, implying soma-to-germline transmission of information. While studies of sperm cells suggest that epigenetic variations can potentially underlie phenotypic alterations across generations, no instance of transmission of DNA- or RNA-mediated information from somatic to germ cells has been reported as yet. To address these issues, we have now generated a mouse model xenografted with human melanoma cells stably expressing EGFP-encoding plasmid. We find that EGFP RNA is released from the xenografted human cells into the bloodstream and eventually in spermatozoa of the mice. Tumor-released EGFP RNA is associated with an extracellular fraction processed for exosome purification and expressing exosomal markers, in all steps of the process, from the xenografted cancer cells to the spermatozoa of the recipient animals, strongly suggesting that exosomes are the carriers of a flow of information from somatic cells to gametes. Together, these results indicate that somatic RNA is transferred to sperm cells, which can therefore act as the final recipients of somatic cell-derived information.


Breast Cancer Research | 2010

Inhibition of phosphatidylcholine-specific phospholipase C downregulates HER2 overexpression on plasma membrane of breast cancer cells

Luisa Paris; Serena Cecchetti; Francesca Spadaro; Laura Abalsamo; Luana Lugini; Maria Elena Pisanu; Egidio Iorio; Pier Giorgio Natali; Carlo Ramoni; Franca Podo

IntroductionOverexpression on plasma membrane of human epidermal growth factor receptor 2 (HER2) is reported in 25% to 30% of breast cancers. Heterodimer formation with cognate members of the epidermal growth factor receptor (EGFR) family, such as HER3 and EGFR, activates abnormal cell-signalling cascades responsible for tumorigenesis and further transcriptional HER2 gene upregulation. Targeting the molecular mechanisms controlling HER2 overexpression and recycling may effectively deactivate this feedback-amplification loop. We recently showed that inactivation of phosphatidylcholine-specific phospholipase C (PC-PLC) may exert a pivotal role in selectively modulating the expression on the membrane of specific receptors or proteins relevant to cell function. In the present study, we investigated the capability of PC-PLC inhibition to target the molecular mechanisms controlling HER2 overexpression on the membrane of breast cancer cells by altering the rates of its endocytosis and lysosomal degradation.MethodsLocalization on the membrane and interaction of PC-PLC with HER2, EGFR, and HER3 were investigated on HER2-overexpressing and HER2-low breast cancer cell lines, by using confocal laser scanning microscopy, flow cytometry, cell-surface biotinylation, isolation of lipid rafts, and immunoprecipitation experiments. The effects of the PC-PLC inhibitor tricyclodecan-9-yl-potassium xanthate (D609) on HER2 expression on the membrane and on the levels of overall HER2, HER2-HER3, and HER2-EGFR contents were monitored in the HER2-overexpressing SKBr3 cells, after either transient or continuous receptor engagement with anti-HER2 monoclonal antibodies, including trastuzumab. Changes of HER2 expression and cell proliferation were examined in SKBr3, BT-474, and MDA-MB-453 cells continuously exposed to D609 alone or combined with trastuzumab.ResultsPC-PLC selectively accumulates on the plasma membrane of HER2-overexpressing cells, where it colocalizes and associates with HER2 in raft domains. PC-PLC inhibition resulted in enhanced HER2 internalization and lysosomal degradation, inducing downmodulation of HER2 expression on the membrane. Moreover, PC-PLC inhibition resulted in strong retardation of HER2 reexpression on the membrane and a decrease in the overall cellular contents of HER2, HER2-HER3, and HER2-EGFR heterodimers. The PC-PLC inhibitor also induced antiproliferative effects, especially in trastuzumab-resistant cells.ConclusionsThe results pointed to PC-PLC inhibition as a potential means to counteract the tumorigenic effects of HER2 amplification and complement the effectiveness of current HER2-targeting therapies.

Collaboration


Dive into the Luana Lugini's collaboration.

Top Co-Authors

Avatar

Stefano Fais

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Cristina Federici

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Francesco Lozupone

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Francesca Luciani

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Elisabetta Iessi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mariantonia Logozzi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Licia Rivoltini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Agnese Molinari

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Serena Cecchetti

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Giorgio Parmiani

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge