Cristina Migliore
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina Migliore.
Oncogene | 2008
Simona Corso; Cristina Migliore; Elena Ghiso; G De Rosa; Paolo M. Comoglio; Silvia Giordano
In spite of the established knowledge of the genetic alterations responsible for cancer onset, the genes promoting and maintaining the invasive/metastatic phenotype are still elusive. The MET proto-oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF), senses unfavorable micro-environmental conditions and drives cell invasion and metastasis. MET overexpression, often induced by tumor hypoxia, leads to constitutive activation of the receptor and correlates with poor prognosis. To establish the role of MET in different phases of tumor progression, we developed an inducible lentiviral delivery system of RNA interference. Silencing the endogenous MET gene, overexpressed in tumor cells, resulted in (i) impairment of the execution of the full invasive growth program in vitro, (ii) lack of tumor growth and (iii) decreased generation of experimental metastases in vivo. Notably, silencing MET in already established metastases led to their almost complete regression. This indicates that persistent expression of the MET oncogene is mandatory until the advanced phases of cancer progression.
European Journal of Cancer | 2008
Cristina Migliore; Silvia Giordano
Altered regulation of tyrosine kinase receptors (RTKs) is frequent in solid tumours and it is often associated with the acquisition of an aggressive phenotype. Thus, therapies targeting these receptors have been proposed as molecular approaches to treat human cancers. The MET proto-oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF), controls genetic programmes leading to cell growth, invasion and protection from apoptosis. Germ-line mutations of MET in patients affected by hereditary papillary renal carcinomas (HPRC) have provided strong genetic evidences for its role in human malignancies; moreover, constitutive activation of this receptor, as a consequence of different mechanisms such as over-expression, autocrine stimulation or point mutations, is frequent in sporadic cancers. Several strategies to block the activation of MET are under development, such as the use of tyrosine kinase inhibitors or monoclonal antibodies and some of these compounds have already been used in clinical trials. In this review, we will discuss the molecular mechanisms underlying MET involvement in tumourigenesis and present pre-clinical and clinical data obtained with compounds aimed at targeting MET in the frame of cancer therapy.
Clinical Cancer Research | 2012
Cristina Migliore; Martin; Vp Leoni; Angelo Restivo; Luigi Atzori; Annalisa Petrelli; C Isella; Luigi Zorcolo; Ivana Sarotto; Giuseppe Casula; Pm Comoglio; Amedeo Columbano; Silvia Giordano
Purpose: MET, the tyrosine kinase receptor for hepatocyte growth factor, is frequently overexpressed in colon cancers with high metastatic tendency. We aimed to evaluate the role of its negative regulators, miR-1 and miR-199a*, and its transcriptional activator, the metastasis-associated in colon cancer 1 (MACC1), in controlling MET expression in human colon cancer samples. Experimental Design: The expression of MET, miR-1, miR-199a*, and MACC1 was evaluated by real-time PCR in 52 matched pairs of colorectal cancers and nontumoral surrounding tissues. The biological role of miR-1 in controlling MET expression and biological activity was assessed in colon cancer cells either by its forced expression or by AntagomiR-mediated inhibition. Results: MiR-1 was downregulated in 84.6% of the tumors and its decrease significantly correlated with MET overexpression, particularly in metastatic tumors. We found that concurrent MACC1 upregulation and miR-1 downregulation are required to elicit the highest increase of MET expression. Consistent with a suppressive role of miR-1, its forced in vitro expression in colon cancer cells reduced MET levels and impaired MET-induced invasive growth. Finally, we identified a feedback loop between miR-1 and MET, resulting in their mutual regulation. Conclusions: This study identifies an oncosuppressive role of miR-1 in colorectal cancer in which it acts by controlling MET expression through a feedback loop. Concomitant downregulation of miR-1 and increase of MACC1 can thus contribute to MET overexpression and to the metastatic behavior of colon cancer cells. Clin Cancer Res; 18(3); 737–47. ©2011 AACR.
Molecular Cancer | 2010
Simona Corso; Elena Ghiso; Virna Cepero; J Rafael Sierra; Cristina Migliore; Andrea Bertotti; Livio Trusolino; Paolo M. Comoglio; Silvia Giordano
BackgroundGastric cancer is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Thus, MET is considered a good candidate for targeted therapeutic intervention in this type of tumor, and MET inhibitors recently entered clinical trials. One of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. Perspective studies are thus mandatory to identify the molecular mechanisms that could cause resistance to these therapies.ResultsOur in vitro and in vivo results demonstrate that, in MET-addicted gastric cancer cells, the activation of HER (Human Epidermal Receptor) family members induces resistance to MET silencing or inhibition by PHA-665752 (a selective kinase inhibitor). We provide molecular evidences highlighting the role of EGFR, HER3, and downstream signaling pathways common to MET and HER family in resistance to MET inhibitors. Moreover, we show that an in vitro generated gastric cancer cell line resistant to MET-inhibition displays overexpression of HER family members, whose activation contributes to maintenance of resistance.ConclusionsOur findings predict that gastric cancer tumors bearing constitutive activation of HER family members are poorly responsive to MET inhibition, even if this receptor is constitutively active. Moreover, the appearance of these alterations might also be responsible for the onset of resistance in initially responsive tumors.
Hepatology | 2014
Annalisa Petrelli; Andrea Perra; Davide Corà; Pia Sulas; Silvia Menegon; Claudia Manca; Cristina Migliore; Marta Anna Kowalik; Giovanna M. Ledda-Columbano; Silvia Giordano; Amedeo Columbano
Studies on gene and/or microRNA (miRNA) dysregulation in the early stages of hepatocarcinogenesis are hampered by the difficulty of diagnosing early lesions in humans. Experimental models recapitulating human hepatocellular carcinoma (HCC) are then used to perform this analysis. We performed miRNA and gene expression profiling to characterize the molecular events involved in the multistep process of hepatocarcinogenesis in the resistant‐hepatocyte rat model. A high percentage of dysregulated miRNAs/genes in HCC were similarly altered in early preneoplastic lesions positive for the stem/progenitor cell marker cytokeratin‐19, indicating that several HCC‐associated alterations occur from the very beginning of the carcinogenic process. Our analysis also identified miRNA/gene‐target networks aberrantly activated at the initial stage of hepatocarcinogenesis. Activation of the nuclear factor erythroid related factor 2 (NRF2) pathway and up‐regulation of the miR‐200 family were among the most prominent changes. The relevance of these alterations in the development of HCC was confirmed by the observation that NRF2 silencing impaired while miR‐200a overexpression promoted HCC cell proliferation in vitro. Moreover, T3‐induced in vivo inhibition of the NRF2 pathway accompanied the regression of cytokeratin‐19‐positive nodules, suggesting that activation of this transcription factor contributes to the onset and progression of preneoplastic lesions towards malignancy. The finding that 78% of genes and 57% of dysregulated miRNAs in rat HCC have been previously associated with human HCC as well underlines the translational value of our results. Conclusion: This study indicates that most of the molecular changes found in HCC occur in the very early stages of hepatocarcinogenesis. Among these, the NRF2 pathway plays a relevant role and may represent a new therapeutic target. (Hepatology 2014;58:228–241)
Oncogene | 2012
Annalisa Petrelli; Andrea Perra; K. Schernhuber; Marilisa Cargnelutti; Alessandro Salvi; Cristina Migliore; Elena Ghiso; Anna Benetti; Sergio Barlati; Giovanna M. Ledda-Columbano; Nazario Portolani; G. De Petro; Amedeo Columbano; Silvia Giordano
MicroRNAs (miRNAs) have an important role in a wide range of physiological and pathological processes, and their dysregulation has been reported to affect the development and progression of cancers, including hepatocellular carcinoma (HCC). However, in the plethora of dysregulated miRNAs, it is largely unknown which of them have a causative role in the hepatocarcinogenic process. In the present study, we first aimed to determine changes in the expression profile of miRNAs in human HCCs and to compare them with liver tumors generated in a rat model of chemically induced HCC. We found that members of the miR-100 family (miR-100, miR-99a) were downregulated in human HCCs; a similar downregulation was also observed in rat HCCs. Their reduction was paralleled by an increased expression of polo like kinase 1 (PLK1), a target of these miRNAs. The introduction of miR-100 in HCC cells impaired their growth ability and their capability to form colonies in soft agar. Next, we aimed at investigating, in the same animal model, if dysregulation of miR-100 and PLK1 is an early or late event along the multistep process of hepatocarcinogenesis. The obtained results showed that miR-100 downregulation (i) is already evident in very early preneoplastic lesions generated 9 weeks after carcinogenic treatment; (ii) is also observed in adenomas and early HCCs; and (iii) is not simply a marker of proliferating hepatocytes. To our knowledge, this is the first work unveiling the role of a miRNA family along HCC progression.
Archive | 2014
Annalisa Petrelli; Andrea Perra; Davide Corà; Pia Sulas; Silvia Menegon; C Manca; Cristina Migliore; Ma Kowalik; Ledda Columbano Gm; Silvia Giordano; A. Columbano
Studies on gene and/or microRNA (miRNA) dysregulation in the early stages of hepatocarcinogenesis are hampered by the difficulty of diagnosing early lesions in humans. Experimental models recapitulating human hepatocellular carcinoma (HCC) are then used to perform this analysis. We performed miRNA and gene expression profiling to characterize the molecular events involved in the multistep process of hepatocarcinogenesis in the resistant‐hepatocyte rat model. A high percentage of dysregulated miRNAs/genes in HCC were similarly altered in early preneoplastic lesions positive for the stem/progenitor cell marker cytokeratin‐19, indicating that several HCC‐associated alterations occur from the very beginning of the carcinogenic process. Our analysis also identified miRNA/gene‐target networks aberrantly activated at the initial stage of hepatocarcinogenesis. Activation of the nuclear factor erythroid related factor 2 (NRF2) pathway and up‐regulation of the miR‐200 family were among the most prominent changes. The relevance of these alterations in the development of HCC was confirmed by the observation that NRF2 silencing impaired while miR‐200a overexpression promoted HCC cell proliferation in vitro. Moreover, T3‐induced in vivo inhibition of the NRF2 pathway accompanied the regression of cytokeratin‐19‐positive nodules, suggesting that activation of this transcription factor contributes to the onset and progression of preneoplastic lesions towards malignancy. The finding that 78% of genes and 57% of dysregulated miRNAs in rat HCC have been previously associated with human HCC as well underlines the translational value of our results. Conclusion: This study indicates that most of the molecular changes found in HCC occur in the very early stages of hepatocarcinogenesis. Among these, the NRF2 pathway plays a relevant role and may represent a new therapeutic target. (Hepatology 2014;58:228–241)
Trends in Molecular Medicine | 2013
Cristina Migliore; Silvia Giordano
The discovery of oncogene addiction dramatically changed the therapeutic approach for cancer treatment, and many drugs targeting specific molecular alterations are now in clinics. Despite the big success of these new compounds, the main limit to their efficacy is represented by resistance to therapy. The alteration of the activity or of the expression of many proteins has already been linked to the onset of resistance, but recent evidence indicates a role of microRNAs (miRNAs) as well. In this context, the idea of exploiting miRNAs as predictors of response or resistance to cancer therapy represents an intriguing possibility. The purpose of this review is to address the relationship between miRNAs and targeted therapies response and resistance.
The Prostate | 2013
Ida Rapa; Marco Volante; Cristina Migliore; Antonella Farsetti; Alfredo Berruti; Giorgio V. Scagliotti; Silvia Giordano; Mauro Papotti
Neuroendocrine differentiation in prostate cancer is a dynamic process associated to the onset of hormone‐refractory disease in vivo. The molecular mechanisms underlying this process are poorly recognized. Our study aimed at testing in vitro the role of hASH‐1, a transcription factor implicated in neuroendocrine differentiation, in the onset of neuroendocrine phenotype in prostate cancer cells.
Oncogene | 2017
Maria Apicella; Cristina Migliore; Tania Capeloa; Silvia Menegon; Marilisa Cargnelutti; Maurizio Degiuli; Anna Sapino; Antonino Sottile; Ivana Sarotto; Laura Casorzo; Paola Cassoni; M De Simone; Paolo M. Comoglio; Silvia Marsoni; Simona Corso; Silvia Giordano
Amplification of the MET oncogene occurs in 2–4% of gastroesophageal cancers and defines a small and aggressive subset of tumors. Although in vitro studies have given very promising results, clinical trials with MET inhibitors have been disappointing, showing few and short lasting responses. The aim of the work was to exploit a MET-amplified patient-derived xenograft model to optimize anti-MET therapeutic strategies in gastroesophageal cancer. We found that despite the high MET amplification level (26 gene copies), in the absence of qualitative or quantitative alterations of EGFR, MET inhibitors induced only tumor growth inhibition, whereas dual MET/EGFR inhibition led to complete tumor regression. Importantly, the combo treatment completely prevented the onset of resistance, which quite rapidly appeared in tumors treated with MET monotherapy. We found that this secondary resistance was due to EGFR activation and could be overcome by dual MET/EGFR inhibition. Similar results were also obtained in a MET-addicted, established gastric cancer cell line. In vitro experiments performed on tumor-derived primary cells confirmed that MET inhibitors were not able to abrogate the activation of downstream transducers and that only the combined MET/EGFR treatment completely shut off the signaling. Previously reported cases, as well as those described here, showed only partial and transient sensitivity to anti-MET therapy. The finding that combined anti-MET/EGFR therapy—even in the absence of EGFR genetic alterations—induced complete and durable response, represents a proof of concept and guarantees further investigations, opening a new perspective of treatment for these patients.