Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Ghiso is active.

Publication


Featured researches published by Elena Ghiso.


Cancer Research | 2010

MET and KRAS Gene Amplification Mediates Acquired Resistance to MET Tyrosine Kinase Inhibitors

Virna Cepero; J Rafael Sierra; Simona Corso; Elena Ghiso; Laura Casorzo; Tim Perera; Paolo M. Comoglio; Silvia Giordano

The establishment of the role of MET in human cancer has led to the development of small-molecule inhibitors, many of which are currently in clinical trials. Thus far, nothing is known about their therapeutic efficacy and the possible emergence of resistance to treatment, a problem that has been often observed with other receptor tyrosine kinase (RTK) inhibitors. To predict mechanisms of acquired resistance, we generated resistant cells by treating MET-addicted cells with increasing concentrations of the MET small-molecule inhibitors PHA-665752 or JNJ38877605. Resistant cells displayed MET gene amplification, leading to increased expression and constitutive phosphorylation of MET, followed by subsequent amplification and overexpression of wild-type (wt) KRAS. Cells harboring KRAS amplification progressively lost their MET dependence and acquired KRAS dependence. Our results suggest that MET and KRAS amplification is a general mechanism of resistance to specific MET inhibitors given that similar results were observed with two small inhibitors and in different cell lines of different histotypes. To our knowledge, this is the first report showing that overexpression of wt KRAS can overcome the inhibitory effect of a RTK inhibitor. In view of the fact that cellular models of resistance to inhibitors targeting other tyrosine kinases have predicted and corroborated clinical findings, our results provide insights into strategies for preventing and/or overcoming drug resistance.


Oncogene | 2008

Silencing the MET oncogene leads to regression of experimental tumors and metastases

Simona Corso; Cristina Migliore; Elena Ghiso; G De Rosa; Paolo M. Comoglio; Silvia Giordano

In spite of the established knowledge of the genetic alterations responsible for cancer onset, the genes promoting and maintaining the invasive/metastatic phenotype are still elusive. The MET proto-oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor (HGF), senses unfavorable micro-environmental conditions and drives cell invasion and metastasis. MET overexpression, often induced by tumor hypoxia, leads to constitutive activation of the receptor and correlates with poor prognosis. To establish the role of MET in different phases of tumor progression, we developed an inducible lentiviral delivery system of RNA interference. Silencing the endogenous MET gene, overexpressed in tumor cells, resulted in (i) impairment of the execution of the full invasive growth program in vitro, (ii) lack of tumor growth and (iii) decreased generation of experimental metastases in vivo. Notably, silencing MET in already established metastases led to their almost complete regression. This indicates that persistent expression of the MET oncogene is mandatory until the advanced phases of cancer progression.


Journal of Hepatology | 2014

YAP activation is an early event and a potential therapeutic target in liver cancer development

Andrea Perra; Marta Anna Kowalik; Elena Ghiso; Giovanna M. Ledda-Columbano; Luca Di Tommaso; Maria Maddalena Angioni; Carlotta Raschioni; Elena Testore; Massimo Roncalli; Silvia Giordano; Amedeo Columbano

BACKGROUND & AIMS Although the growth suppressing Hippo pathway has been implicated in hepatocellular carcinoma (HCC) pathogenesis, it is unknown at which stage of hepatocarcinogenesis its dysregulation occurs. We investigated in rat and human preneoplastic lesions whether overexpression of the transcriptional co-activator Yes-associated protein (YAP) is an early event. METHODS The experimental model used is the resistant-hepatocyte (R-H) rat model. Gene expression was determined by qRT-PCR or immunohistochemistry. Forward genetic experiments were performed in human HCC cells and in murine oval cells. RESULTS All foci of preneoplastic hepatocytes, generated in rats 4weeks after diethylnitrosamine (DENA) treatment, displayed YAP accumulation. This was associated with down-regulation of the β-TRCP ligase, known to mediate YAP degradation, and of microRNA-375, targeting YAP. YAP accumulation was paralleled by the up-regulation of its target genes. Increased YAP expression was also observed in human early dysplastic nodules and adenomas. Animal treatment with verteporfin (VP), which disrupts the formation of the YAP-TEAD complex, significantly reduced preneoplastic foci and oval cell proliferation. In vitro experiments confirmed that VP-mediated YAP inhibition impaired cell growth in HCC and oval cells; notably, oval cell transduction with wild type or active YAP conferred tumorigenic properties in vitro and in vivo. CONCLUSIONS These results suggest that (i) YAP overexpression is an early event in rat and human liver tumourigenesis; (ii) it is critical for the clonal expansion of carcinogen-initiated hepatocytes and oval cells, and (iii) VP-induced disruption of the YAP-TEAD interaction may provide an important approach for the treatment of YAP-overexpressing cancers.


Molecular Cancer | 2010

Activation of HER family members in gastric carcinoma cells mediates resistance to MET inhibition.

Simona Corso; Elena Ghiso; Virna Cepero; J Rafael Sierra; Cristina Migliore; Andrea Bertotti; Livio Trusolino; Paolo M. Comoglio; Silvia Giordano

BackgroundGastric cancer is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Thus, MET is considered a good candidate for targeted therapeutic intervention in this type of tumor, and MET inhibitors recently entered clinical trials. One of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. Perspective studies are thus mandatory to identify the molecular mechanisms that could cause resistance to these therapies.ResultsOur in vitro and in vivo results demonstrate that, in MET-addicted gastric cancer cells, the activation of HER (Human Epidermal Receptor) family members induces resistance to MET silencing or inhibition by PHA-665752 (a selective kinase inhibitor). We provide molecular evidences highlighting the role of EGFR, HER3, and downstream signaling pathways common to MET and HER family in resistance to MET inhibitors. Moreover, we show that an in vitro generated gastric cancer cell line resistant to MET-inhibition displays overexpression of HER family members, whose activation contributes to maintenance of resistance.ConclusionsOur findings predict that gastric cancer tumors bearing constitutive activation of HER family members are poorly responsive to MET inhibition, even if this receptor is constitutively active. Moreover, the appearance of these alterations might also be responsible for the onset of resistance in initially responsive tumors.


Oncogene | 2012

Sequential analysis of multistage hepatocarcinogenesis reveals that miR-100 and PLK1 dysregulation is an early event maintained along tumor progression.

Annalisa Petrelli; Andrea Perra; K. Schernhuber; Marilisa Cargnelutti; Alessandro Salvi; Cristina Migliore; Elena Ghiso; Anna Benetti; Sergio Barlati; Giovanna M. Ledda-Columbano; Nazario Portolani; G. De Petro; Amedeo Columbano; Silvia Giordano

MicroRNAs (miRNAs) have an important role in a wide range of physiological and pathological processes, and their dysregulation has been reported to affect the development and progression of cancers, including hepatocellular carcinoma (HCC). However, in the plethora of dysregulated miRNAs, it is largely unknown which of them have a causative role in the hepatocarcinogenic process. In the present study, we first aimed to determine changes in the expression profile of miRNAs in human HCCs and to compare them with liver tumors generated in a rat model of chemically induced HCC. We found that members of the miR-100 family (miR-100, miR-99a) were downregulated in human HCCs; a similar downregulation was also observed in rat HCCs. Their reduction was paralleled by an increased expression of polo like kinase 1 (PLK1), a target of these miRNAs. The introduction of miR-100 in HCC cells impaired their growth ability and their capability to form colonies in soft agar. Next, we aimed at investigating, in the same animal model, if dysregulation of miR-100 and PLK1 is an early or late event along the multistep process of hepatocarcinogenesis. The obtained results showed that miR-100 downregulation (i) is already evident in very early preneoplastic lesions generated 9 weeks after carcinogenic treatment; (ii) is also observed in adenomas and early HCCs; and (iii) is not simply a marker of proliferating hepatocytes. To our knowledge, this is the first work unveiling the role of a miRNA family along HCC progression.


Hepatology | 2011

Yes-Associated Protein Regulation of Adaptive Liver Enlargement and Hepatocellular Carcinoma Development in Mice

Marta Anna Kowalik; Christian Saliba; Monica Pibiri; Andrea Perra; Giovanna M. Ledda-Columbano; Ivana Sarotto; Elena Ghiso; Silvia Giordano; Amedeo Columbano

The Hippo kinase cascade, a growth‐suppressive pathway that ultimately antagonizes the transcriptional coactivator Yes‐associated protein (YAP), has been shown in transgenic animals to orchestrate organ size regulation. The purpose of this study was to determine whether in non–genetically modified mice (1) the Hippo pathway is involved in the regulation of adaptive liver enlargement caused by the mitogen 1,4‐bis[2‐(3,5‐dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor and (2) a dysregulation of this pathway occurs during the development of chemically induced hepatocellular carcinoma (HCC). We show that liver enlargement caused by TCPOBOP was associated with an increase of YAP protein levels that paralleled the increase in 2‐bromodeoxyuridine incorporation. Interestingly, when a second dose of TCPOBOP was given to mice with enlarged livers, no further increases in liver mass or YAP protein levels were observed, suggesting that the Hippo pathway prevents further growth of the hyperplastic liver. Viral‐mediated exogenous expression of active YAP in mouse livers was able to partially overcome the block of hepatocyte proliferation. We also show that HCCs developed in mice given diethylnitrosamine and then subjected to repeated treatments with TCPOBOP had increased levels of YAP that were associated with down‐regulation of microRNA 375, which is known to control YAP expression, and with enhanced levels of alpha‐fetoprotein and connective tissue growth factor, two target genes of YAP.


Journal of Hepatology | 2011

Expression of c-jun is not mandatory for mouse hepatocyte proliferation induced by two nuclear receptor ligands: TCPOBOP and T3

Vera Piera Leoni; Giovanna M. Ledda-Columbano; Monica Pibiri; Christian Saliba; Andrea Perra; Marta Anna Kowalik; Olì Maria Victoria Grober; Maria Ravo; Alessandro Weisz; Joseph Locker; Elena Ghiso; Silvia Giordano; Amedeo Columbano

BACKGROUND & AIMS Mice lacking c-jun in the liver display impaired regeneration after partial hepatectomy (PH), and were reported to be more resistant to chemically-induced hepatocellular carcinoma (HCC). We investigated the role of c-jun in normal and preneoplastic hepatocyte proliferation induced by ligands of nuclear receptors, which cause liver hyperplasia in the absence of cell loss/death. METHODS The effect of 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) on hepatocyte proliferation was determined in c-jun conditional knockout (c-jun(Δli)) or in mouse liver where c-jun has been silenced. To study the role of c-jun in HCC development, c-jun(Δli) and WT mice were given diethylnitrosamine (DENA) followed by repeated injections of TCPOBOP. RESULTS Hepatocyte proliferation induced by TCPOBOP was associated with a stronger proliferative response and earlier S phase entry in c-jun(Δli) mice, compared to WT animals. Moreover, silencing of c-jun in the liver of CD-1 mice caused increased hepatocyte proliferation. A stronger hepatocyte proliferative response of c-jun(Δli) mice was observed also following treatment with a ligand of thyroid hormone receptor. Finally, loss of c-jun did not inhibit the development of HCC induced by DENA and promoted by TCPOBOP. CONCLUSIONS (i) c-jun may, under certain conditions, negatively regulate proliferation of normal hepatocytes, (ii) c-jun is not an absolute requirement for DENA/TCPOBOP-induced HCC formation, suggesting that the therapeutic potential of c-jun/JNK inhibition in liver tumors might be impaired by an increased stimulation of cell growth due to blockade of the c-jun pathway.


Neoplasia | 2017

YAP-Dependent AXL Overexpression Mediates Resistance to EGFR Inhibitors in NSCLC

Elena Ghiso; Cristina Migliore; Vito Ciciriello; Elena Morando; Annalisa Petrelli; Simona Corso; Emmanuele De Luca; Gaia Gatti; Marco Volante; Silvia Giordano

The Yes-associated protein (YAP) is a transcriptional co-activator upregulating genes that promote cell growth and inhibit apoptosis. The main dysregulation of the Hippo pathway in tumors is due to YAP overexpression, promoting epithelial to mesenchymal transition, cell transformation, and increased metastatic ability. Moreover, it has recently been shown that YAP plays a role in sustaining resistance to targeted therapies as well. In our work, we evaluated the role of YAP in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in lung cancer. In EGFR-addicted lung cancer cell lines (HCC4006 and HCC827) rendered resistant to several EGFR inhibitors, we observed that resistance was associated to YAP activation. Indeed, YAP silencing impaired the maintenance of resistance, while YAP overexpression decreased the responsiveness to EGFR inhibitors in sensitive parental cells. In our models, we identified the AXL tyrosine kinase receptor as the main YAP downstream effector responsible for sustaining YAP-driven resistance: in fact, AXL expression was YAP dependent, and pharmacological or genetic AXL inhibition restored the sensitivity of resistant cells to the anti-EGFR drugs. Notably, YAP overactivation and AXL overexpression were identified in a lung cancer patient upon acquisition of resistance to EGFR TKIs, highlighting the clinical relevance of our in vitro results. The reported data demonstrate that YAP and its downstream target AXL play a crucial role in resistance to EGFR TKIs and suggest that a combined inhibition of EGFR and the YAP/AXL axis could be a good therapeutic option in selected NSCLC patients.


Embo Molecular Medicine | 2018

miR‐205 mediates adaptive resistance to MET inhibition via ERRFI1 targeting and raised EGFR signaling

Cristina Migliore; Elena Morando; Elena Ghiso; Sergio Anastasi; Vera Piera Leoni; Maria Apicella; Davide Corà; Anna Sapino; Filippo Pietrantonio; Filippo de Braud; Amedeo Columbano; Oreste Segatto; Silvia Giordano

The onset of secondary resistance represents a major limitation to long‐term efficacy of target therapies in cancer patients. Thus, the identification of mechanisms mediating secondary resistance is the key to the rational design of therapeutic strategies for resistant patients. MiRNA profiling combined with RNA‐Seq in MET‐addicted cancer cell lines led us to identify the miR‐205/ERRFI1 (ERBB receptor feedback inhibitor‐1) axis as a novel mediator of resistance to MET tyrosine kinase inhibitors (TKIs). In cells resistant to MET‐TKIs, epigenetically induced miR‐205 expression determined the downregulation of ERRFI1 which, in turn, caused EGFR activation, sustaining resistance to MET‐TKIs. Anti‐miR‐205 transduction reverted crizotinib resistance in vivo, while miR‐205 over‐expression rendered wt cells refractory to TKI treatment. Importantly, in the absence of EGFR genetic alterations, miR‐205/ERRFI1‐driven EGFR activation rendered MET‐TKI‐resistant cells sensitive to combined MET/EGFR inhibition. As a proof of concept of the clinical relevance of this new mechanism of adaptive resistance, we report that a patient with a MET‐amplified lung adenocarcinoma displayed deregulation of the miR‐205/ERRFI1 axis in concomitance with onset of clinical resistance to anti‐MET therapy.


Journal of Hepatology | 2011

216 MIR-100 IS DOWNREGULATED FROM EARLY STAGES OF HEPATOCARCINOGENESIS AND CORRELATES WITH OVEREXPRESSION OF ITS TARGET PLK1

Annalisa Petrelli; A. Perra; K. Schernhuber; Alessandro Salvi; Cristina Migliore; Elena Ghiso; Anna Benetti; Giovanna M. Ledda-Columbano; S. Barlati; Nazario Portolani; G. de Petro; Amedeo Columbano; Silvia Giordano

available kits. DNA samples were typed for SNPs: −1195 G>A of COX-2, −308 G>A of TNF-a, +936 C>T of VEGF-A and −174 G>C of IL-6 genes. RFLP-PCR method was used to type the SNPs. sIL-6 were dosed with a commercially available ELISA kit. Results: Our data show a statistically significant difference only for the SNP of VEGF-A +936 C>T between HCC and LC patients (P = 0.039). sIL-6 were higher in G/G compared to C/C genotypes in HCC (z = 2; P = 0.04) and G/G vs G/C (z = 1.8; P < 0.03). sIL-6 in G carriers (G/G+G/C) were higher in HCC 4.8 (0.2–17.5) vs LC patients 2.2 (0.07–11.5) (z = 2.8; P = 0.004). sIL-6 in HCC correlated with G carriers (G/G+G/C) (r = 0.25, P = 0.05). A positive correlation was found between sIL-6 levels and some liver function tests both in LC and in HCC. Conclusions: Our results show that C allele carriers in VEGF-A gene are more frequent in HCC vs LC, and confirm the association between the G carriers in IL-6 gene and higher sIL-6, suggesting that these genetic factors could contribute to the development of HCC.

Collaboration


Dive into the Elena Ghiso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge