Cristina Molinatto
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina Molinatto.
JAMA Neurology | 2012
Pasquale Striano; Antonietta Coppola; Roberta Paravidino; Michela Malacarne; Stefania Gimelli; Angela Robbiano; Monica Traverso; Marianna Pezzella; Vincenzo Belcastro; Amedeo Bianchi; Maurizio Elia; Antonio Falace; Elisabetta Gazzerro; Edoardo Ferlazzo; Elena Freri; Roberta Galasso; Giuseppe Gobbi; Cristina Molinatto; Simona Cavani; Orsetta Zuffardi; Salvatore Striano; Giovanni Battista Ferrero; Margherita Silengo; Maria Luigia Cavaliere; Matteo Benelli; Alberto Magi; Maria Piccione; Franca Dagna Bricarelli; Domenico Coviello; Marco Fichera
OBJECTIVE To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. DESIGN Prospective cohort study. SETTING Epilepsy centers in Italy. PATIENTS Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. MAIN OUTCOME MEASURES Identification of copy number variations (CNVs) and gene enrichment. RESULTS Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = .03) and showed higher gene content (P = .02) than those in control subjects. The CNVs larger than 1 megabase (P = .002) and including more than 10 genes (P = .005) occurred more frequently in patients than in control subjects. Nine patients (34.6%) among those harboring rare CNVs showed rearrangements associated with emerging microdeletion or microduplication syndromes. Mental retardation and neuropsychiatric features were associated with rare CNVs (P = .004), whereas epilepsy type was not. The CNV rate in patients with epilepsy and mental retardation or neuropsychiatric features is not different from that observed in patients with mental retardation only. Moreover, significant enrichment of genes involved in ion transport was observed within CNVs identified in patients with epilepsy. CONCLUSIONS Patients with epilepsy show a significantly increased burden of large, rare, gene-rich CNVs, particularly when associated with mental retardation and neuropsychiatric features. The limited overlap between CNVs observed in the epilepsy group and those observed in the group with mental retardation only as well as the involvement of specific (ion channel) genes indicate a specific association between the identified CNVs and epilepsy. Screening for CNVs should be performed for diagnostic purposes preferentially in patients with epilepsy and mental retardation or neuropsychiatric features.
European Journal of Human Genetics | 2016
Alessandro Mussa; Silvia Russo; Agostina De Crescenzo; Andrea Freschi; Luciano Calzari; Silvia Maitz; Marina Macchiaiolo; Cristina Molinatto; Giuseppina Baldassarre; Milena Mariani; Luigi Tarani; Maria Francesca Bedeschi; Donatella Milani; Daniela Melis; Andrea Bartuli; Maria Vittoria Cubellis; Angelo Selicorni; Margherita Silengo; Lidia Larizza; Andrea Riccio; Giovanni Battista Ferrero
Beckwith–Wiedemann syndrome (BWS) is characterized by cancer predisposition, overgrowth and highly variable association of macroglossia, abdominal wall defects, nephrourological anomalies, nevus flammeus, ear malformations, hypoglycemia, hemihyperplasia, and organomegaly. BWS molecular defects, causing alteration of expression or activity of the genes regulated by two imprinting centres (IC) in the 11p15 chromosomal region, are also heterogeneous. In this paper we define (epi)genotype–phenotype correlations in molecularly confirmed BWS patients. The characteristics of 318 BWS patients with proven molecular defect were compared among the main four molecular subclasses: IC2 loss of methylation (IC2-LoM, n=190), IC1 gain of methylation (IC1-GoM, n=31), chromosome 11p15 paternal uniparental disomy (UPD, n=87), and cyclin-dependent kinase inhibitor 1C gene (CDKN1C) variants (n=10). A characteristic growth pattern was found in each group; neonatal macrosomia was almost constant in IC1-GoM, postnatal overgrowth in IC2-LoM, and hemihyperplasia more common in UPD (P<0.001). Exomphalos was more common in IC2/CDKN1C patients (P<0.001). Renal defects were typical of UPD/IC1 patients, uretheral malformations of IC1-GoM cases (P<0.001). Ear anomalies and nevus flammeus were associated with IC2/CDKN1C genotype (P<0.001). Macroglossia was less common among UPD patients (P<0.001). Wilms’ tumor was associated with IC1-GoM or UPD and never observed in IC2-LoM patients (P<0.001). Hepatoblastoma occurred only in UPD cases. Cancer risk was lower in IC2/CDKN1C, intermediate in UPD, and very high in IC1 cases (P=0.009). In conclusion, (epi)genotype–phenotype correlations define four different phenotypic BWS profiles with some degree of clinical overlap. These observations impact clinical care allowing to move toward (epi) genotype-based follow-up and cancer screening.
The Journal of Pediatrics | 2016
Alessandro Mussa; Cristina Molinatto; Giuseppina Baldassarre; Evelise Riberi; Silvia Russo; Lidia Larizza; Andrea Riccio; Giovanni Battista Ferrero
OBJECTIVE To compare tumor risk in the 4 Beckwith-Wiedemann syndrome (BWS) molecular subgroups: Imprinting Control Region 1 Gain of Methylation (ICR1-GoM), Imprinting Control Region 2 Loss of Methylation (ICR2-LoM), Chromosome 11p15 Paternal Uniparental Disomy (UPD), and Cyclin-Dependent Kinase Inhibitor 1C gene (CDKN1C) mutation. STUDY DESIGN Studies on BWS and tumor development published between 2000 and 2015 providing (epi)genotype-cancer correlations with histotype data were reviewed and meta-analysed with cancer histotypes as measured outcome and (epi)genotype as exposure. RESULTS A total of 1370 patients with BWS were included: 102 developed neoplasms (7.4%). Tumor prevalence was 2.5% in ICR2-LoM, 13.8% in UPD, 22.8% in ICR1-GoM, and 8.6% in patients with CDKN1C mutations. Cancer ORs were 12.8 in ICR1-GoM, 6.5 in UPD, and 2.9 in patients with CDKN1C mutations compared with patients with ICR2-LoM. Wilms tumor was associated with ICR1-GoM (OR 68.3) and UPD (OR 13.2). UPD also was associated with hepatoblastoma (OR 5.2) and adrenal carcinoma (OR 7.0), and CDKN1C mutations with neuroblastic tumors (OR 7.2). CONCLUSION Cancer screening in BWS could be differentiated on the basis of (epi)genotype and target specific histotypes. Patients with ICR1-GoM and UPD should undergo renal ultrasonography scanning, given their risk of Wilms tumor. Alpha feto protein monitoring for heptaoblastoma is suggested in patients with UPD. Adrenal carcinoma may deserve screening in patients with UPD. Patients with CDKN1C mutations may deserve neuroblastoma screening based on urinary markers and ultrasonography scanning. Finally, screening appears questionable in cases of ICR2-LoM, given low tumor risk.
BMC Medical Genetics | 2014
Emilia Cirillo; Giuliana Giardino; Vera Gallo; Pamela Puliafito; Chiara Azzari; Rosa Bacchetta; Fabio Cardinale; Maria Pia Cicalese; Rita Consolini; Silvana Martino; Baldassarre Martire; Cristina Molinatto; Alessandro Plebani; Gioacchino Scarano; Annarosa Soresina; Caterina Cancrini; Paolo Rossi; Maria Cristina Digilio; Claudio Pignata
Background22q11.2 deletion syndrome (22q11.2DS) is a common microdeletion syndrome, which occurs in approximately 1:4000 births. Familial autosomal dominant recurrence of the syndrome is detected in about 8-28% of the cases. Aim of this study is to evaluate the intergenerational and intrafamilial phenotypic variability in a cohort of familial cases carrying a 22q11.2 deletion.MethodsThirty-two 22q11.2DS subjects among 26 families were enrolled.ResultsSecond generation subjects showed a significantly higher number of features than their transmitting parents (212 vs 129, P = 0.0015). Congenital heart defect, calcium-phosphorus metabolism abnormalities, developmental and speech delay were more represented in the second generation (P < 0.05). Ocular disorders were more frequent in the parent group. No significant difference was observed for the other clinical variables. Intrafamilial phenotypic heterogeneity was identified in the pedigrees. In 23/32 families, a higher number of features were found in individuals from the second generation and a more severe phenotype was observed in almost all of them, indicating the worsening of the phenotype over generations. Both genetic and epigenetic mechanisms may be involved in the phenotypic variability.ConclusionsSecond generation subjects showed a more complex phenotype in comparison to those from the first generation. Both ascertainment bias related to patient selection or to the low rate of reproductive fitness of adults with a more severe phenotype, and several not well defined molecular mechanism, could explain intergenerational and intrafamilial phenotypic variability in this syndrome.
American Journal of Medical Genetics Part A | 2013
Alessandro Mussa; Silvia Russo; Agostina De Crescenzo; Nicoletta Chiesa; Cristina Molinatto; Angelo Selicorni; Lorenzo Richiardi; Lidia Larizza; Margherita Silengo; Andrea Riccio; Giovanni Battista Ferrero
Although Beckwith–Wiedemann syndrome (BWS, OMIM #130650) is the most common genetic overgrowth disorder, data on its epidemiology are scanty and the estimates of its occurrence show wide variability. The aim of this study is to assess its prevalence in Piedmont Region (Italy). We included in the study all patients diagnosed with BWS born in Piedmont from 1997 to 2009 through a search in the Italian Registry for Rare Diseases. This source was further validated with data from the network of Regional Clinical Genetics services and surveys in extra‐regional Clinical Genetics centres, laboratories and the Italian BWS patients association. All cases were further ascertained through physical exam, medical history and specific molecular tests. The search identified 46 clear‐cut cases of BWS born across the 13‐year period, providing a prevalence of 1:10 340 live births (95% confidence interval 1:7,752–13,698 live births). Among the 41 patients who underwent molecular tests, 70.7% were positive, showing hypomethylation of the IC2 imprinting center (29.3%), paternal chromosome 11 uniparental disomy (pUPD11, 24.4%), IC1 hypermethylation (14.6%), CDKN1c mutation (2.4%), whereas 29.3% had negative molecular tests. The study provides an approximate BWS prevalence of 1:10,000 live birth, the highest reported to date.
Pediatrics | 2017
Alessandro Mussa; Cristina Molinatto; Flavia Cerrato; Orazio Palumbo; Massimo Carella; Giuseppina Baldassarre; Diana Carli; Clementina Peris; Andrea Riccio; Giovanni Battista Ferrero
This study highlights the need for awareness in the scientific community that ART entails an increased risk of BWS. BACKGROUND AND OBJECTIVES: The emerging association of assisted reproductive techniques (ART) with imprinting disorders represents a major issue in the scientific debate on infertility treatment and human procreation. We studied the prevalence of Beckwith-Wiedemann syndrome (BWS) in children conceived through ART to define the specific associated relative risk. METHODS: Patients with BWS born in Piemonte, Italy, were identified and matched with the general demographic data and corresponding regional ART registry. RESULTS: Between 2005 and 2014, live births in Piemonte were 379 872, including 7884 from ART. Thirty-eight patients with BWS were born, 7 from ART and 31 naturally conceived. BWS birth prevalence in the ART group was significantly higher than that of the naturally conceived group (1:1126 vs 1:12 254, P < .001). The absolute live birth risk in the ART group was 887.9 per 1 000 000 vs 83.3 per 1 000 000 in the naturally conceived group, providing a relative risk of 10.7 (95% confidence interval 4.7–24.2). During the 1997–2014 period, 67 patients were diagnosed with BWS out of 663 834 newborns (1:9908 live births). Nine out of the 67 BWS patients were conceived through ART (13.4%), and 8 were molecularly tested, with 4 having an imprinting center 2 loss of methylation, 2 with 11p15.5 paternal uniparental disomy, and 2 negative results. CONCLUSIONS: ART entails a 10-fold increased risk of BWS and could be implicated in the pathogenesis of genomic events besides methylation anomalies. These data highlight the need for awareness of ART–associated health risk.
Clinical Genetics | 2016
Alessandro Mussa; Silvia Russo; A. de Crescenzo; Andrea Freschi; Luciano Calzari; Silvia Maitz; Marina Macchiaiolo; Cristina Molinatto; Giuseppina Baldassarre; Milena Mariani; Luigi Tarani; Maria Francesca Bedeschi; Donatella Milani; Daniela Melis; Andrea Bartuli; Maria Vittoria Cubellis; Angelo Selicorni; Margherita Silengo; Lidia Larizza; Andrea Riccio; Giovanni Battista Ferrero
We provide data on fetal growth pattern on the molecular subtypes of Beckwith–Wiedemann syndrome (BWS): IC1 gain of methylation (IC1‐GoM), IC2 loss of methylation (IC2‐LoM), 11p15.5 paternal uniparental disomy (UPD), and CDKN1C mutation. In this observational study, gestational ages and neonatal growth parameters of 247 BWS patients were compared by calculating gestational age‐corrected standard deviation scores (SDS) and proportionality indexes to search for differences among IC1‐GoM (n = 21), UPD (n = 87), IC2‐LoM (n = 147), and CDKN1C mutation (n = 11) patients. In IC1‐GoM subgroup, weight and length are higher than in other subgroups. Body proportionality indexes display the following pattern: highest in IC1‐GoM patients, lowest in IC2‐LoM/CDKN1C patients, intermediate in UPD ones. Prematurity was significantly more prevalent in the CDKN1C (64%) and IC2‐LoM subgroups (37%). Fetal growth patterns are different in the four molecular subtypes of BWS and remarkably consistent with altered gene expression primed by the respective molecular mechanisms. IC1‐GoM cases show extreme macrosomia and severe disproportion between weight and length excess. In IC2‐LoM/CDKN1C patients, macrosomia is less common and associated with more proportionate weight/length ratios with excess of preterm birth. UPD patients show growth patterns closer to those of IC2‐LoM, but manifest a body mass disproportion rather similar to that seen in IC1‐GoM cases.
American Journal of Medical Genetics Part A | 2016
Elisa Giorgio; Andrea Ciolfi; Elisa Biamino; Viviana Caputo; Eleonora Di Gregorio; E Belligni; Alessandro Calcia; Elena Gaidolfi; Alessandro Bruselles; Cecilia Mancini; Simona Cavalieri; Cristina Molinatto; Margherita Silengo; Giovanni Battista Ferrero; Marco Tartaglia
Whole exome sequencing (WES) is a powerful tool to identify clinically undefined forms of intellectual disability/developmental delay (ID/DD), especially in consanguineous families. Here we report the genetic definition of two sporadic cases, with syndromic ID/DD for whom array—Comparative Genomic Hybridization (aCGH) identified a de novo copy number variant (CNV) of uncertain significance. The phenotypes included microcephaly with brachycephaly and a distinctive facies in one proband, and hypotonia in the legs and mild ataxia in the other. WES allowed identification of a functionally relevant homozygous variant affecting a known disease gene for rare syndromic ID/DD in each proband, that is, c.1423C>T (p.Arg377*) in the Trafficking Protein Particle Complex 9 (TRAPPC9), and c.154T>C (p.Cys52Arg) in the Very Low Density Lipoprotein Receptor (VLDLR). Four mutations affecting TRAPPC9 have been previously reported, and the present finding further depicts this syndromic form of ID, which includes microcephaly with brachycephaly, corpus callosum hypoplasia, facial dysmorphism, and overweight. VLDLR‐associated cerebellar hypoplasia (VLDLR‐CH) is characterized by non‐progressive congenital ataxia and moderate‐to‐profound intellectual disability. The c.154T>C (p.Cys52Arg) mutation was associated with a very mild form of ataxia, mild intellectual disability, and cerebellar hypoplasia without cortical gyri simplification. In conclusion, we report two novel cases with rare causes of autosomal recessive ID, which document how interpreting de novo array‐CGH variants represents a challenge in consanguineous families; as such, clinical WES should be considered in diagnostic testing.
Italian Journal of Pediatrics | 2009
E Belligni; Elisa Biamino; Cristina Molinatto; Jole Messa; Mauro Pierluigi; Francesca Faravelli; Orsetta Zuffardi; Giovanni Battista Ferrero; Margherita Silengo
BackgroundIntellectual disability affects approximately 1 to 3% of the general population. The etiology is still poorly understood and it is estimated that one-half of the cases are due to genetic factors. Cryptic subtelomeric aberrations have been found in roughly 5 to 7% of all cases.MethodsWe performed a subtelomeric FISH analysis on 76 unrelated children with normal standard karyotype ascertained by developmental delay or intellectual disability, associated with congenital malformations, and/or facial dysmorphisms.ResultsTen cryptic chromosomal anomalies have been identified in the whole cohort (13,16%), 8 in the group of patients characterized by developmental delay or intellectual disability associated with congenital malformations and facial dysmorphisms, 2 in patients with developmental delay or intellectual disability and facial dysmorphisms only.ConclusionWe demonstrate that a careful clinical examination is a very useful tool for pre-selection of patients for genomic analysis, clearly enhancing the chromosomal anomaly detection rate. Clinical features of most of these patients are consistent with the corresponding emerging chromosome phenotypes, pointing out these new clinical syndromes associated with specific genomic imbalances.
Journal of Clinical Research in Pediatric Endocrinology | 2013
Valentina Peiretti; Alessandro Mussa; Francesca Feyles; Gerdi Tuli; Arianna Santanera; Cristina Molinatto; Giovanni Battista Ferrero; Andrea Corrias
Bannayan-Riley-Ruvalcaba syndrome (BRRs) is an overgrowth disorder characterized by macrocephaly, pigmented maculae of the glans penis, and benign mesodermal hamartomas (primarily subcutaneous and visceral lipomas, multiple hemangiomas, and intestinal polyps). Dysmorphic features as well as delayed neuropsychomotor development can also be present. These patients have also a higher risk of developing tumors, as the gene involved in BRRs is phosphatase and tensin homologue (PTEN), and up to 30% of the patients have thyroid involvement consistent with multinodular goiter, thyroid adenoma, differentiated non-medullary thyroid cancer, or Hashimoto’s thyroiditis. Here, we report two cases of BRRs at opposite ends of its phenotypic spectrum: clinical manifestations of the first patient were more severe, while the second one showed only few signs and had no family history of the disease. Both cases developed thyroid disorders detected by thyroid ultrasound screening. We believe that it is important for clinicians, specifically pediatric endocrinologists, to know that this syndrome can appear in very subtle ways and also to be aware that thyroid nodules and intestinal polyps seem to be its most frequently encountered features. Conflict of interest:None declared.