Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristina Pina is active.

Publication


Featured researches published by Cristina Pina.


Nature Cell Biology | 2012

Inferring rules of lineage commitment in haematopoiesis

Cristina Pina; Cristina Fugazza; Alex J. Tipping; John Brown; Shamit Soneji; José Teles; Carsten Peterson; Tariq Enver

How the molecular programs of differentiated cells develop as cells transit from multipotency through lineage commitment remains unexplored. This reflects the inability to access cells undergoing commitment or located in the immediate vicinity of commitment boundaries. It remains unclear whether commitment constitutes a gradual process, or else represents a discrete transition. Analyses of inxa0vitro self-renewing multipotent systems have revealed cellular heterogeneity with individual cells transiently exhibiting distinct biases for lineage commitment. Such systems can be used to molecularly interrogate early stages of lineage affiliation and infer rules of lineage commitment. In haematopoiesis, population-based studies have indicated that lineage choice is governed by global transcriptional noise, with self-renewing multipotent cells reversibly activating transcriptome-wide lineage-affiliated programs. We examine this hypothesis through functional and molecular analysis of individual blood cells captured from self-renewal cultures, during cytokine-driven differentiation and from primary stem and progenitor bone marrow compartments. We show dissociation between self-renewal potential and transcriptome-wide activation of lineage programs, and instead suggest that multipotent cells experience independent activation of individual regulators resulting in a low probability of transition to the committed state.


Nature Communications | 2013

Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level

Gemma Swiers; Claudia Baumann; O'Rourke Jf; Eleni Giannoulatou; Stephen Taylor; Anagha Joshi; Victoria Moignard; Cristina Pina; Thomas Bee; Konstantinos D. Kokkaliaris; Momoko Yoshimoto; Mervin C. Yoder; Jon Frampton; Timm Schroeder; Tariq Enver; Berthold Göttgens; Marella de Bruijn

Haematopoietic stem cells (HSCs) are the founding cells of the adult haematopoietic system, born during ontogeny from a specialized subset of endothelium, the haemogenic endothelium (HE) via an endothelial-to-haematopoietic transition (EHT). Although recently imaged in real time, the underlying mechanism of EHT is still poorly understood. We have generated a Runx1 +23 enhancer-reporter transgenic mouse (23GFP) for the prospective isolation of HE throughout embryonic development. Here we perform functional analysis of over 1,800 and transcriptional analysis of 268 single 23GFP(+) HE cells to explore the onset of EHT at the single-cell level. We show that initiation of the haematopoietic programme occurs in cells still embedded in the endothelial layer, and is accompanied by a previously unrecognized early loss of endothelial potential before HSCs emerge. Our data therefore provide important insights on the timeline of early haematopoietic commitment.


Cell Reports | 2016

A CRISPR Dropout Screen Identifies Genetic Vulnerabilities and Therapeutic Targets in Acute Myeloid Leukemia

Konstantinos Tzelepis; Hiroko Koike-Yusa; Etienne De Braekeleer; Yilong Li; Emmanouil Metzakopian; Oliver M. Dovey; Annalisa Mupo; Vera Grinkevich; Meng Li; Milena Mazan; Malgorzata Gozdecka; Shuhei Ohnishi; Jonathan L. Cooper; Miten Patel; Thomas McKerrell; Bin Chen; Ana Filipa Domingues; Paolo Gallipoli; Sarah A. Teichmann; Hannes Ponstingl; Ultan McDermott; Julio Saez-Rodriguez; Brian J. P. Huntly; Francesco Iorio; Cristina Pina; George S. Vassiliou; Kosuke Yusa

Summary Acute myeloid leukemia (AML) is an aggressive cancer with a poor prognosis, for which mainstream treatments have not changed for decades. To identify additional therapeutic targets in AML, we optimize a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening platform and use it to identify genetic vulnerabilities in AML cells. We identify 492 AML-specific cell-essential genes, including several established therapeutic targets such as DOT1L, BCL2, and MEN1, and many other genes including clinically actionable candidates. We validate selected genes using genetic and pharmacological inhibition, and chose KAT2A as a candidate for downstream study. KAT2A inhibition demonstrated anti-AML activity by inducing myeloid differentiation and apoptosis, and suppressed the growth of primary human AMLs of diverse genotypes while sparing normal hemopoietic stem-progenitor cells. Our results propose that KAT2A inhibition should be investigated as a therapeutic strategy in AML and provide a large number of genetic vulnerabilities of this leukemia that can be pursued in downstream studies.


Blood | 2009

High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle

Alex J. Tipping; Cristina Pina; Anders Castor; Dengli Hong; Neil P. Rodrigues; Lorenza Lazzari; Gillian May; Sten Eirik W. Jacobsen; Tariq Enver

Evidence suggests the transcription factor GATA-2 is a critical regulator of murine hematopoietic stem cells. Here, we explore the relation between GATA-2 and cell proliferation and show that inducing GATA-2 increases quiescence (G(0) residency) of murine and human hematopoietic cells. In human cord blood, quiescent fractions (CD34(+)CD38(-)Hoechst(lo)Pyronin Y(lo)) express more GATA-2 than cycling counterparts. Enforcing GATA-2 expression increased quiescence of cord blood cells, reducing proliferation and performance in long-term culture-initiating cell and colony-forming cell (CFC) assays. Gene expression analysis places GATA-2 upstream of the quiescence regulator MEF, but enforcing MEF expression does not prevent GATA-2-conferred quiescence, suggesting additional regulators are involved. Although known quiescence regulators p21(CIP1) and p27(KIP1) do not appear to be responsible, enforcing GATA-2 reduced expression of regulators of cell cycle such as CCND3, CDK4, and CDK6. Enforcing GATA-2 inhibited human hematopoiesis in vivo: cells with highest exogenous expression (GATA-2(hi)) failed to contribute to hematopoiesis in nonobese diabetic-severe combined immunodeficient (NOD-SCID) mice, whereas GATA-2(lo) cells contributed with delayed kinetics and low efficiency, with reduced expression of Ki-67. Thus, GATA-2 activity inhibits cell cycle in vitro and in vivo, highlighting GATA-2 as a molecular entry point into the transcriptional program regulating quiescence in human hematopoietic stem and progenitor cells.


Nature Reviews Genetics | 2016

Transition states and cell fate decisions in epigenetic landscapes.

Naomi Moris; Cristina Pina; Alfonso Martinez Arias

Waddingtons epigenetic landscape is an abstract metaphor frequently used to represent the relationship between gene activity and cell fates during development. Over the past few years, it has become a useful framework for interpreting results from single-cell transcriptomics experiments. It has led to the proposal that, during fate transitions, cells experience smooth, continuous progressions of global transcriptional activity, which can be captured by (pseudo)temporal dynamics. Here, focusing strictly on the fate decision events, we suggest an alternative view: that fate transitions occur in a discontinuous, stochastic manner whereby signals modulate the probability of the transition events.


Epigenetics & Chromatin | 2011

Generation of bivalent chromatin domains during cell fate decisions

Marco Gobbi; David Garrick; Magnus Lynch; Douglas Vernimmen; Jim R. Hughes; Nicolas Goardon; Sidinh Luc; Karen M. Lower; Jacqueline A. Sloane-Stanley; Cristina Pina; Shamit Soneji; Raffaele Renella; Tariq Enver; Stephen Taylor; Sten Eirik W. Jacobsen; Paresh Vyas; Richard J. Gibbons; Douglas R. Higgs

BackgroundIn self-renewing, pluripotent cells, bivalent chromatin modification is thought to silence (H3K27me3) lineage control genes while poising (H3K4me3) them for subsequent activation during differentiation, implying an important role for epigenetic modification in directing cell fate decisions. However, rather than representing an equivalently balanced epigenetic mark, the patterns and levels of histone modifications at bivalent genes can vary widely and the criteria for identifying this chromatin signature are poorly defined.ResultsHere, we initially show how chromatin status alters during lineage commitment and differentiation at a single well characterised bivalent locus. In addition we have determined how chromatin modifications at this locus change with gene expression in both ensemble and single cell analyses. We also show, on a global scale, how mRNA expression may be reflected in the ratio of H3K4me3/H3K27me3.ConclusionsWhile truly poised bivalently modified genes may exist, the original hypothesis that all bivalent genes are epigenetically premarked for subsequent expression might be oversimplistic. In fact, from the data presented in the present work, it is equally possible that many genes that appear to be bivalent in pluripotent and multipotent cells may simply be stochastically expressed at low levels in the process of multilineage priming. Although both situations could be considered to be forms of poising, the underlying mechanisms and the associated implications are clearly different.


Cell Stem Cell | 2013

Dynamic Analysis of Gene Expression and Genome-wide Transcription Factor Binding during Lineage Specification of Multipotent Progenitors.

Gillian May; Shamit Soneji; Alex J. Tipping; José Teles; Simon J. McGowan; Mengchu Wu; Yanping Guo; Cristina Fugazza; John Brown; Göran Karlsson; Cristina Pina; Victor Olariu; Stephen Taylor; Daniel G. Tenen; Carsten Peterson; Tariq Enver

Summary We used the paradigmatic GATA-PU.1 axis to explore, at the systems level, dynamic relationships between transcription factor (TF) binding and global gene expression programs as multipotent cells differentiate. We combined global ChIP-seq of GATA1, GATA2, and PU.1 with expression profiling during differentiation to erythroid and neutrophil lineages. Our analysis reveals (1) differential complexity of sequence motifs bound by GATA1, GATA2, and PU.1; (2) the scope and interplay of GATA1 and GATA2 programs within, and during transitions between, different cell compartments, and the extent of their hard-wiring by DNA motifs; (3) the potential to predict gene expression trajectories based on global associations between TF-binding data and target gene expression; and (4) how dynamic modeling of DNA-binding and gene expression data can be used to infer regulatory logic of TF circuitry. This rubric exemplifies the utility of this cross-platform resource for deconvoluting the complexity of transcriptional programs controlling stem/progenitor cell fate in hematopoiesis.


Cell Stem Cell | 2008

MLLT3 Regulates Early Human Erythroid and Megakaryocytic Cell Fate

Cristina Pina; Gillian May; Shamit Soneji; Dengli Hong; Tariq Enver

Regulatory mechanisms of human hematopoiesis remain largely uncharacterized. Through expression profiling of prospectively isolated stem and primitive progenitor cells as well as committed progenitors from cord blood (CB), we identified MLLT3 as a candidate regulator of erythroid/megakaryocytic (E/Meg) lineage decisions. Through the analysis of the hematopoietic potential of primitive cord blood cells in which MLLT3 expression has been knocked down, we identify a requirement for MLLT3 in the elaboration of the erythroid and megakaryocytic lineages. Conversely, forced expression of MLLT3 promotes the output of erythroid and megakaryocytic progenitors, and analysis of MLLT3 mutants suggests that this capacity of MLLT3 depends on its transcriptional regulatory activity. Gene expression and cis-regulatory element analyses reveal crossregulatory interactions between MLLT3 and E/Meg-affiliated transcription factor GATA-1. Taken together, the data identify MLLT3 as a regulator of early erythroid and megakaryocytic cell fate in the human system.


PLOS Computational Biology | 2013

Transcriptional regulation of lineage commitment--a stochastic model of cell fate decisions.

José Teles; Cristina Pina; Patrik Edén; Mattias Ohlsson; Tariq Enver; Carsten Peterson

Molecular mechanisms employed by individual multipotent cells at the point of lineage commitment remain largely uncharacterized. Current paradigms span from instructive to noise-driven mechanisms. Of considerable interest is also whether commitment involves a limited set of genes or the entire transcriptional program, and to what extent gene expression configures multiple trajectories into commitment. Importantly, the transient nature of the commitment transition confounds the experimental capture of committing cells. We develop a computational framework that simulates stochastic commitment events, and affords mechanistic exploration of the fate transition. We use a combined modeling approach guided by gene expression classifier methods that infers a time-series of stochastic commitment events from experimental growth characteristics and gene expression profiling of individual hematopoietic cells captured immediately before and after commitment. We define putative regulators of commitment and probabilistic rules of transition through machine learning methods, and employ clustering and correlation analyses to interrogate gene regulatory interactions in multipotent cells. Against this background, we develop a Monte Carlo time-series stochastic model of transcription where the parameters governing promoter status, mRNA production and mRNA decay in multipotent cells are fitted to experimental static gene expression distributions. Monte Carlo time is converted to physical time using cell culture kinetic data. Probability of commitment in time is a function of gene expression as defined by a logistic regression model obtained from experimental single-cell expression data. Our approach should be applicable to similar differentiating systems where single cell data is available. Within our system, we identify robust model solutions for the multipotent population within physiologically reasonable values and explore model predictions with regard to molecular scenarios of entry into commitment. The model suggests distinct dependencies of different commitment-associated genes on mRNA dynamics and promoter activity, which globally influence the probability of lineage commitment.


Cell Reports | 2015

Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis

Cristina Pina; José Teles; Cristina Fugazza; Gillian May; Dapeng Wang; Yanping Guo; Shamit Soneji; John Brown; Patrik Edén; Mattias Ohlsson; Carsten Peterson; Tariq Enver

Summary We explore cell heterogeneity during spontaneous and transcription-factor-driven commitment for network inference in hematopoiesis. Since individual genes display discrete OFF states or a distribution of ON levels, we compute and combine pairwise gene associations from binary and continuous components of gene expression in single cells. Ddit3 emerges as a regulatory node with positive linkage to erythroid regulators and negative association with myeloid determinants. Ddit3 loss impairs erythroid colony output from multipotent cells, while forcing Ddit3 in granulo-monocytic progenitors (GMPs) enhances self-renewal and impedes differentiation. Network analysis of Ddit3-transduced GMPs reveals uncoupling of myeloid networks and strengthening of erythroid linkages. RNA sequencing suggests that Ddit3 acts through development or stabilization of a precursor upstream of GMPs with inherent Meg-E potential. The enrichment of Gata2 target genes in Ddit3-dependent transcriptional responses suggests that Ddit3 functions in an erythroid transcriptional network nucleated by Gata2.

Collaboration


Dive into the Cristina Pina's collaboration.

Top Co-Authors

Avatar

Tariq Enver

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gillian May

John Radcliffe Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanping Guo

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sten Eirik W. Jacobsen

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge