Cristina Sánchez-González
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cristina Sánchez-González.
Metabolism-clinical and Experimental | 2013
Ikram Merroun; Cristina Sánchez-González; Rosario Martínez; Carlos López-Chaves; Jesús M. Porres; Pilar Aranda; Juan Llopis; Milagros Galisteo; Antonio Zarzuelo; Mohammed Errami; María López-Jurado
BACKGROUND AND OBJECTIVE Recent research suggests that cannabinoid receptor CB1 antagonists can affect appetite and body weight gain, although their influence on other parameters related to metabolic syndrome is not well documented. The present study was designed to assess the effects of chronic treatment with the CB1 receptor inverse agonist AM 251 (3 mg/kg for 3 weeks) in obese and lean Zucker rats on parameters related to metabolic syndrome. MATERIALS AND METHODS Four groups of rats were used: lean Zucker rats, untreated obese Zucker rats, AM 251-treated obese Zucker rats and a pair-fed obese Zucker rat experimental group which received the same amount of food as that consumed by the animals treated with AM251. Food intake, body weight gain, energy expenditure, plasma biochemical parameters, leptin, insulin and hepatic status markers were analysed. RESULTS Daily injection of AM 251 in obese Zucker rats produced a marked and sustained decrease in daily food intake and body weight and a considerable increase in energy expenditure in comparison with untreated obese Zucker rats. AM 251 administration to obese rats significantly reduced plasma levels of glucose, leptin, AST, ALT, Gamma GT, total bilirubin and LDL cholesterol whereas HDL cholesterol plasma levels increased. The results also showed a decrease in liver/weight body ratio and total fat content in the liver. The main effects of AM251 (3 mg/kg) found in this study were not observed in pair-fed obese animals, highlighting the additional beneficial effects of treatment with AM 251. The results obtained in obese rats can be interpreted as a decrease in leptin and insulin resistance, thereby improving glucose and lipid metabolism, alleviating the steatosis present in the metabolic syndrome and thus favourably modifying plasma levels of hepatic biomarkers. CONCLUSION Our results indicate that the cannabinoid CB1 inverse agonist AM 251 represents a promising therapeutic strategy for the treatment of obesity and metabolic syndrome.
Nanomedicine: Nanotechnology, Biology and Medicine | 2018
Carlos López-Chaves; Juan Soto-Alvaredo; Maria Montes-Bayón; Jörg Bettmer; Juan Llopis; Cristina Sánchez-González
Concerns about the bioaccumulation and toxicity of gold nanoparticles inside humans have recently risen. HT-29 and HepG2 cell lines and Wistar rats were exposed to 10, 30 or 60 nm gold nanoparticles to determine their tissue distribution, subcellular location and deleterious effects. Cell viability, ROS production and DNA damage were evaluated in vitro. Lipid peroxidation and protein carbonylation were determined in liver. ICP-MS measurements showed the presence of gold in intestine, kidney, liver, spleen, feces and urine. Subcellular locations of gold nanoparticles were observed in colon cells and liver samples by transmission electron microscopy. Inflammatory markers in liver and biochemical parameters in plasma were measured to assess the inflammatory status and presence of tissue damage. The size of the nanoparticles determined differences in the biodistribution and the excretion route. The smallest nanoparticles showed more deleterious effects, confirmed by their location inside the cell nucleus and the higher DNA damage.
Food and Chemical Toxicology | 2018
Francesca Giampieri; José L. Quiles; Francisco Josè Orantes-Bermejo; Massimiliano Gasparrini; Tamara Y. Forbes-Hernandez; Cristina Sánchez-González; Juan Llopis; Lorenzo Rivas-García; Sadia Afrin; Alfonso Varela-López; Danila Cianciosi; Patricia Reboredo-Rodríguez; Cristina Torres Fernández-Piñar; Ruben Calderón Iglesias; Roberto Ruiz; Silvia Aparicio; Jorge Crespo; Luis Dzul Lopez; Jianbo Xiao; Maurizio Battino
During the process of beeswax recycling, many industrial derivatives are obtained. These matrices may have an interesting healthy and commercial potential but to date they have not been properly studied. The aim of the present work was to evaluate the proximal and phytochemical composition, the antioxidant capacity and cytotoxic effects of two by-products from beeswax recycling process named MUD 1 and MUD 2 on liver hepatocellular carcinoma. Our results showed that MUD 1 presented the highest (P < .05) fiber, protein, carbohydrate, polyphenol and flavonoid concentration, as well as the highest (P < .05) total antioxidant capacity than the MUD 2 samples. MUD1 exerted also anticancer activity on HepG2 cells, by reducing cellular viability, increasing intracellular ROS levels and affecting mitochondrial functionality in a dose-dependent manner. We showed for the first time that by-products from beeswax recycling process can represent a rich source of phytochemicals with high total antioxidant capacity and anticancer activity; however, further researches are necessary to evaluate their potentiality for human health by in vivo studies.
New Journal of Chemistry | 2016
Belén Fernández; Alejandro Gómez-Vílchez; Cristina Sánchez-González; Jakelhyne Bayón; Eider San Sebastian; Santiago Gómez-Ruiz; Carlos López-Chaves; Pilar Aranda; Juan Llopis; Antonio Rodríguez-Diéguez
We have designed and synthesized two novel vanadium coordination compounds using 1H-benzimidazole-2-carboxylic acid and 5-aminopyridine-2-carboxylic acid. These two materials have a mononuclear structure with crystallization water molecules in the network. Both compounds exhibit intense photoluminescence emission at room temperature in the solid state and show in vivo antidiabetic activity together with low in vitro cell toxicities. Luminescence theoretical studies have been performed.
Journal of Analytical Atomic Spectrometry | 2017
Juan Soto-Alvaredo; Carlos López-Chaves; Cristina Sánchez-González; Maria Montes-Bayón; Juan Llopis; Jörg Bettmer
Gold nanoparticles (Au NPs) are widely used today in a broad range of applications like electronics, sensors, catalysis and especially in biomedicine. However, the increase in their use has raised concerns about the possible interactions in vivo and the unexpected responses inside humans and other living organisms. Analytical tools that are able to detect their presence in biological samples and also provide information about the presence of dissolved metal ions inside biological samples are, therefore, urgently needed for a proper understanding of the behaviour of these materials. In this work, an HPLC-ICP-MS technique for the determination of Au NPs was adapted to the analysis of tissues from Wistar rats after intraperitoneal injection of 10 nm Au NPs. This technique allows the detection of Au NPs and low-molecular Au species, permitting the detection and monitoring of potential degradation processes. Alkaline and enzymatic digestions were tested to solubilize the particles and to verify their stability during the extraction process. Enzymatic digestion with proteinase K over 14 h was found to be suitable for the extraction of the Au species with recovery rates of about 91%. Finally, the method was applied to the analysis of liver and spleen samples. Significant abundances of low-molecular Au species were detected (around 30%). This observation suggested that a degradation process played a pivotal role during the transport and accumulation of Au NPs that were intraperitoneally injected into Wistar rats.
The Scientific World Journal | 2014
Cristina Sánchez-González; Carlos López-Chaves; Cristina E. Trenzado; Pilar Aranda; María López-Jurado; Jorge Gómez-Aracena; Maria Montes-Bayón; Alfredo Sanz-Medel; Juan Llopis
The role of vanadium as a micronutrient and hypoglycaemic agent has yet to be fully clarified. The present study was undertaken to investigate changes in the metabolism of iron and in antioxidant defences of diabetic STZ rats following treatment with vanadium. Four groups were examined: control; diabetic; diabetic treated with 1 mgV/day; and Diabetic treated with 3 mgV/day. The vanadium was supplied in drinking water as bis(maltolato) oxovanadium (IV) (BMOV). The experiment had a duration of five weeks. Iron was measured in food, faeces, urine, serum, muscle, kidney, liver, spleen, and femur. Superoxide dismutase, catalase, NAD(P)H: quinone-oxidoreductase-1 (NQO1) activity, and protein carbonyl group levels in the liver were determined. In the diabetic rats, higher levels of Fe absorbed, Fe content in kidney, muscle, and femur, and NQO1 activity were recorded, together with decreased catalase activity, in comparison with the control rats. In the rats treated with 3 mgV/day, there was a significant decrease in fasting glycaemia, Fe content in the liver, spleen, and heart, catalase activity, and levels of protein carbonyl groups in comparison with the diabetic group. In conclusion BMOV was a dose-dependent hypoglycaemic agent. Treatment with 3 mgV/day provoked increased Fe deposits in the tissues, which promoted a protein oxidative damage in the liver.
Food and Chemical Toxicology | 2014
Cristina Sánchez-González; Lorenzo Rivas-García; Carlos López-Chaves; Alba Rodriguez-Nogales; Francesca Algieri; Julio Gálvez; Jorge Gómez-Aracena; Laura Vera-Ramirez; Maria Montes-Bayón; Alfredo Sanz-Medel; Juan Llopis
The aim of this study was to examine whether alterations in iron homeostasis, caused by exposure to vanadium, are related to changes in the gene expression of hepatic hepcidin. Two groups of rats were examined: control and vanadium-exposed. Vanadium, as bis(maltolato)oxovanadium(IV) was supplied in the drinking water. The experiment had a duration of five weeks. Iron and manganese were measured in excreta, serum and tissues. Leptin, ferritin, IL-1β, IL-6, TNF-α, red blood cells, haemoglobin and haematocrit were determined. Protein carbonyl group levels and hepcidin gene expression were determined in the liver. In the vanadium-exposed rats, iron absorption, serum iron and leptin and all haematological parameters decreased. Levels of IL-6, TNF-α and ferritin in serum and of iron in the liver, spleen and heart increased. In the liver, levels of protein carbonyl groups and hepcidin mRNA were also higher in the vanadium-exposed group. Exposure to vanadium did not modify manganese homeostasis. The results obtained from this study provide the first evidence that bis(maltolato)oxovanadium(IV) produces an increase in the gene expression of the hepcidin, possibly caused by an inflammatory process. Both factors could be the cause of alterations in Fe homeostasis and the appearance of anaemia. However, Mn homeostasis was not affected.
Journal of Trace Elements in Medicine and Biology | 2015
Cristina Sánchez-González; Carlos López-Chaves; Jorge Gómez-Aracena; Pilar Galindo; Pilar Aranda; Juan Llopis
Manganese (Mn) is an essential trace element involved in the formation of bone and in amino acid, lipid and carbohydrate metabolism. Mn excess may be neurotoxic to humans, affecting specific areas of the central nervous system. However, relatively little is known about its physiological and/or toxicological effects, and very few data are available concerning the role of Mn in chronic renal failure (CRF). This paper describes a 12-month study of the evolution of plasma Mn levels in predialysis patients with CRF and the relationship with energy and macronutrient intake. The participants in this trial were 64 patients with CRF in predialysis and 62 healthy controls. Plasma levels of creatinine, urea, uric acid, total protein and Mn were measured. The glomerular filtration rate (GFR) was calculated using the Cockcroft-Gault index. The CRF patients had higher plasma levels of creatinine, urea, uric acid and Mn and a lower GFR than the controls. Plasma Mn was positively correlated with creatinine, plasma urea and plasma uric acid and was negatively correlated with the GFR and the intake of energy and macronutrients. In conclusion, CRF in predialysis patients is associated with increases in circulating levels of Mn.
Journal of Medicinal Food | 2014
Virginia A. Aparicio; Elena Nebot; Mohamed Tassi; Daniel Camiletti-Moirón; Cristina Sánchez-González; Jesús M. Porres; Pilar Aranda
Different dietary protein sources can promote different renal statuses. We examined the effects of whey protein (WP) and soy protein (SP) intake on plasma, urinary, and morphological renal parameters in rats. One hundred and twenty Wistar rats were randomly distributed into 2 experimental groups fed with either WP or SP diets over 12 weeks. These diets were based on commercial WP or SP isolates. The urinary calcium content was higher in the WP diet compared to the SP diet group (P<.001) whereas the urinary citrate level was lower (P<.001). The urinary pH was more acidic in the WP diet group compared to the SP diet group (P<.001); however, no differences were observed between the groups for any of the renal morphological parameters analyzed (all, P>.05) or other plasma renal markers such as albumin or urea concentrations. The increase of acid and urinary calcium and the lower urinary citrate level observed in the WP diet group could increase the incidence of nephrolithiasis compared to the SP diet group. Despite the WP showed poorer acid-base profile, no significant morphological renal changes were observed. These results suggest that the use of SP instead of WP appears to promote a more alkaline plasma and urinary profile, with their consequent renal advantages.
The Scientific World Journal | 2013
Cristina Sánchez-González; Carlos López-Chaves; Lorenzo Rivas-García; Pilar Galindo; Jorge Gómez-Aracena; Pilar Aranda; Juan Llopis
Scandium (Sc) is an element with many industrial applications, but relatively little is known about its physiological and/or toxicological effects, and very little data are available concerning the role of Sc in chronic renal failure (CRF). This paper examines the changes in plasma levels of Sc in predialysis patients with CRF and the relationship with blood parameters. The participants in this trial were 48 patients with CRF in predialysis and 53 healthy controls. Erythrocyte, haemoglobin, and haematocrit counts in blood were determined, and levels of creatinine, urea, uric acid, albumin, total protein and Sc were measured in plasma. The glomerular filtration rate (GFR) was calculated using the Cockcroft-Gault index. The CRF patients were found to have higher plasma levels of creatinine, urea, uric acid, albumin, total protein, and Sc and a lower GFR than that the controls. Scandium in plasma was positively correlated with creatinine and plasma urea and negatively correlated with GFR, haemoglobin, and haematocrit and was associated with the risk of lower levels of erythrocytes, haemoglobin, and haematocrit. CRF was associated with increases in the circulating levels of scandium.