Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cristine Chaves Barreto is active.

Publication


Featured researches published by Cristine Chaves Barreto.


Frontiers in Microbiology | 2016

The Ecology of Acidobacteria: Moving beyond Genes and Genomes

Anna M. Kielak; Cristine Chaves Barreto; George A. Kowalchuk; Johannes A. van Veen; Eiko E. Kuramae

The phylum Acidobacteria is one of the most widespread and abundant on the planet, yet remarkably our knowledge of the role of these diverse organisms in the functioning of terrestrial ecosystems remains surprisingly rudimentary. This blatant knowledge gap stems to a large degree from the difficulties associated with the cultivation of these bacteria by classical means. Given the phylogenetic breadth of the Acidobacteria, which is similar to the metabolically diverse Proteobacteria, it is clear that detailed and functional descriptions of acidobacterial assemblages are necessary. Fortunately, recent advances are providing a glimpse into the ecology of members of the phylum Acidobacteria. These include novel cultivation and enrichment strategies, genomic characterization and analyses of metagenomic DNA from environmental samples. Here, we couple the data from these complementary approaches for a better understanding of their role in the environment, thereby providing some initial insights into the ecology of this important phylum. All cultured acidobacterial type species are heterotrophic, and members of subdivisions 1, 3, and 4 appear to be more versatile in carbohydrate utilization. Genomic and metagenomic data predict a number of ecologically relevant capabilities for some acidobacteria, including the ability to: use of nitrite as N source, respond to soil macro-, micro nutrients and soil acidity, express multiple active transporters, degrade gellan gum and produce exopolysaccharide (EPS). Although these predicted properties allude to a competitive life style in soil, only very few of these prediction shave been confirmed via physiological studies. The increased availability of genomic and physiological information, coupled to distribution data in field surveys and experiments, should direct future progress in unraveling the ecology of this important but still enigmatic phylum.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2015

Microbiological functioning, diversity, and structure of bacterial communities in ultramafic soils from a tropical savanna

Marco Pessoa-Filho; Cristine Chaves Barreto; Fábio Bueno dos Reis Junior; Rodrigo da Rocha Fragoso; Flávio Silva Costa; Ieda de Carvalho Mendes; Leide Rovênia Miranda de Andrade

Ultramafic soils are characterized by high levels of metals, and have been studied because of their geochemistry and its relation to their biological component. This study evaluated soil microbiological functioning (SMF), richness, diversity, and structure of bacterial communities from two ultramafic soils and from a non-ultramafic soil in the Brazilian Cerrado, a tropical savanna. SMF was represented according to simultaneous analysis of microbial biomass C (MBC) and activities of the enzymes β-glucosidase, acid phosphomonoesterase and arylsulfatase, linked to the C, P and S cycles. Bacterial community diversity and structure were studied by sequencing of 16S rRNA gene clone libraries. MBC and enzyme activities were not affected by high Ni contents. Changes in SMF were more related to the organic matter content of soils (SOM) than to their available Ni. Phylogeny-based methods detected qualitative and quantitative differences in pairwise comparisons of bacterial community structures of the three sites. However, no correlations between community structure differences and SOM or SMF were detected. We believe this work presents benchmark information on SMF, diversity, and structure of bacterial communities for a unique type of environment within the Cerrado biome.


Microbial Ecology | 2015

The Gut Microbiota of Workers of the Litter-Feeding Termite Syntermes wheeleri (Termitidae: Syntermitinae): Archaeal, Bacterial, and Fungal Communities

Renata Henrique Santana; Elisa Caldeira Pires Catão; Fabyano Alvares Cardoso Lopes; Reginaldo Constantino; Cristine Chaves Barreto; Ricardo Henrique Kruger

The gut microbiota of termites allows them to thrive on a variety of different materials such as wood, litter, and soil. For that reason, they play important roles in the decomposition of biomass in diverse biomes. This function is essential in the savanna, where litter-feeding termites are one of the few invertebrates active during the dry season. In this study, we describe the gut microbiota of workers (third and fourth instars) of the species Syntermes wheeleri, a litter-feeding termite from the Brazilian savanna. Results of 16S and 18S ribosomal RNA (rRNA) gene-targeted pyrosequencing using primers sets specific to each domain have revealed its bacterial, archaeal, and fungal diversities. Firmicutes accounted for more than half of the operational taxonomic units of the Bacteria domain. The most abundant fungal species were from the class Dothideomycetes of the phylum Ascomycota. The methanogenic orders Methanobacteriales, Methanosarcinales, and Methanomicrobiales of the phylum Euryarchaeota accounted for the greatest part of the Archaea detected in this termite. A comparison of the gut microbiota of the two instars revealed a difference in operational taxonomic unit (OTU) abundance but not in species richness. This description of the whole gut microbiota represents the first study to evaluate relationships among bacteria, archaea, fungi, and host in S. wheeleri.


Journal of General Plant Pathology | 2012

Diversity of Brazilian biovar 2 strains of Ralstonia solanacearum

Bárbara Santana; Carlos Alberto Lopes; Elba Alvarez; Cristine Chaves Barreto; Caitilyn Allen; Betania F. Quirino

Ralstonia solanacearum is responsible for bacterial wilt disease. Specific and accurate identification of this pathogen is essential for protection of susceptible crops as well as breeding resistant varieties. Historically, R. solanacearum has been classified into biovars based on the use of sugar and alcohol as carbon sources, into races based on its ability to infect different hosts, more recently into phylotypes based on the intergenic transcribed sequence of the ribosomal RNA genes 16S and 23S and into sequevars based on the endoglucanase gene (egl) sequence. Race 3 biovar 2 (R3Bv2) is widespread in South and Central America, and in Brazil it is present in all potato-producing regions as the most prevalent strain. In this study, we classified 53 Brazilian R. solanacearum biovar 2 (Bv2) strains by traditional and molecular methods. PCR with specific primers confirmed all 53 bacterial strains as belonging to the R. solanacearum species complex, and all were classified as biovar 2A or 2T based on acidification of sugars and alcohols. Multiplex phylotype PCR assigned all strains to phylotype II. Phylogenetic analysis of egl sequences showed that most Bv2 strains from Brazil analyzed in this study did not cluster with known sequevars and are less clonal than the R3Bv2 strains reported for other countries. This is the first study to address the diversity of a collection of Brazilian R. solanacearum strains using the phylotype and sequevar classification scheme.


Journal of Chemical Ecology | 2016

Assessing Antibacterial Potential of Components of Phyllomedusa distincta Skin and its Associated Dermal Microbiota

Ananda Brito de Assis; Cristiane dos Santos; Flávia Rodrigues P. Dutra; Ailla de Oliveira Motta; Flávio Silva Costa; Carlos A. Navas; Beatriz Simas Magalhães; Cristine Chaves Barreto

The granular glands of anuran skin secrete an array of bioactive molecules that protect a frog against pathogens and predators. The skin also harbors a microbial community. Although there is evidence to suggest that the microbiota complement the innate immune defense systems against pathogen infection, the effect of the frog bioactive molecules on its resident microbiota has not yet been fully investigated. In the present study, the skin microbiota of Phyllomedusa distincta obtained from two different geographical areas was evaluated with molecular and culture-based approaches. The antagonistic effects exhibited by the host’s microbiota and by a novel dermaseptin peptide isolated from P. distincta skin were investigated. Four isolated bacterial colonies displayed antimicrobial activity against known frog pathogens. Our results were consistent with the hypothesis that microbiota from P. distincta may interact with pathogenic microorganisms to protect a frog’s health. On the other hand, the novel dermaseptin peptide exhibited an antimicrobial effect on pathogens as well as on some of the bacteria obtained from the skin microbiota. The richness of bacteria on P. distincta skin was further investigated by 16S rRNA gene clone libraries, which revealed that the family Enterobacteriaceae was prevalent, but a high variability at the species level was observed among individual frogs. Differences observed on the microbiota of frogs from contrasting habitats indicated an influence of the environment on the structure of the skin microbiota of P. distincta.


Archaea | 2016

Archaeal Community Changes Associated with Cultivation of Amazon Forest Soil with Oil Palm

Daiva Domenech Tupinambá; Maurício Egídio Cantão; Ohana Yonara Assis Costa; Jessica Carvalho Bergmann; Ricardo Henrique Kruger; Cynthia Maria Kyaw; Cristine Chaves Barreto; Betania F. Quirino

This study compared soil archaeal communities of the Amazon forest with that of an adjacent area under oil palm cultivation by 16S ribosomal RNA gene pyrosequencing. Species richness and diversity were greater in native forest soil than in the oil palm-cultivated area, and 130 OTUs (13.7%) were shared between these areas. Among the classified sequences, Thaumarchaeota were predominant in the native forest, whereas Euryarchaeota were predominant in the oil palm-cultivated area. Archaeal species diversity was 1.7 times higher in the native forest soil, according to the Simpson diversity index, and the Chao1 index showed that richness was five times higher in the native forest soil. A phylogenetic tree of unclassified Thaumarchaeota sequences showed that most of the OTUs belong to Miscellaneous Crenarchaeotic Group. Several archaeal genera involved in nutrient cycling (e.g., methanogens and ammonia oxidizers) were identified in both areas, but significant differences were found in the relative abundances of Candidatus Nitrososphaera and unclassified Soil Crenarchaeotic Group (prevalent in the native forest) and Candidatus Nitrosotalea and unclassified Terrestrial Group (prevalent in the oil palm-cultivated area). More studies are needed to culture some of these Archaea in the laboratory so that their metabolism and physiology can be studied.


PLOS ONE | 2017

Skin microbiota in frogs from the Brazilian Atlantic Forest: Species, forest type, and potential against pathogens

Ananda Brito de Assis; Cristine Chaves Barreto; Carlos A. Navas

The cutaneous microbiota of amphibians can be defined as a biological component of protection, since it can be composed of bacteria that produce antimicrobial compounds. Several factors influence skin microbial structure and it is possible that environmental variations are among one of these factors, perhaps through physical-chemical variations in the skin. This community, therefore, is likely modified in habitats in which some ecophysiological parameters are altered, as in fragmented forests. Our research goal was to compare the skin bacterial community of four anuran species of the Atlantic Forest of Brazil in landscapes from two different environments: continuous forest and fragmented forest. The guiding hypotheses were: 1) microbial communities of anuran skin vary among sympatric frog species of the Atlantic forest; 2) the degree to which forested areas are intact affects the cutaneous bacterial community of amphibians. If the external environment influences the skin microbiota, and if such influences affect microorganisms capable of inhibiting the colonization of pathogens, we expect consequences for the protection of host individuals. We compared bacterial communities based on richness and density of colony forming units; investigated the antimicrobial potential of isolated strains; and did the taxonomic identification of isolated morphotypes. We collected 188 individual frogs belonging to the species Proceratophrys boiei, Dendropsophus minutus, Aplastodiscus leucopygius and Phyllomedusa distincta, and isolated 221 bacterial morphotypes. Our results demonstrate variation in the skin microbiota of sympatric amphibians, but only one frog species exhibited differences in the bacterial communities between populations from fragmented and continuous forest. Therefore, the variation we observed is probably derived from both intrinsic aspects of the host amphibian species and extrinsic aspects of the environment occupied by the host. Finally, we detected antimicrobial activity in 27 morphotypes of bacteria isolated from all four amphibian species.


PLOS ONE | 2018

Fungal diversity in oil palm leaves showing symptoms of Fatal Yellowing disease

Ohana Yonara Assis Costa; Daiva Domenech Tupinambá; Jessica Carvalho Bergmann; Cristine Chaves Barreto; Betania F. Quirino

Oil palm (Elaeis guineensis Jacq.) is an excellent source of vegetable oil for biodiesel production; however, there are still some limitations for its cultivation in Brazil such as Fatal Yellowing (FY) disease. FY has been studied for many years, but its causal agent has never been determined. In Colombia and nearby countries, it was reported that the causal agent of Fatal Yellowing (Pudrición del Cogollo) is the oomycete Phytophthora palmivora, however, several authors claim that Fatal Yellowing and Pudrición del Cogollo (PC) are different diseases. The major aims of this work were to test, using molecular biology tools, Brazilian oil palm trees for the co-occurrence of the oomycete Phytophthora and FY symptoms, and to characterize the fungal diversity in FY diseased and healthy leaves by next generation sequencing. Investigation with specific primers for the genus Phytophthora showed amplification in only one of the samples. Analysis of the fungal ITS region demonstrated that, at the genus level, different groups predominated in all symptomatic samples, while Pyrenochaetopsis and unclassified fungi predominated in all asymptomatic samples. Our results show that fungal communities were not the same between samples at the same stage of the disease or among all the symptomatic samples. This is the first study that describes the evolution of the microbial community in the course of plant disease and also the first work to use high throughput next generation sequencing to evaluate the fungal community associated with leaves of oil palm trees with and without symptoms of FY.


Genome Announcements | 2016

Draft Genome Sequence of a Novel Mucilaginibacter Member Isolated from Brazilian Amazon Soil

Sérgio A. Alencar; Flávio Silva Costa; Gisele Regina Rodrigues; Cristine Chaves Barreto

ABSTRACT Bacteria from the Mucilaginibacter genus are still poorly understood, although their importance has been shown by recent reports describing great quantities of biofilms produced in their colonies. We report the draft genome sequence of a novel Mucilaginibacter member, comprising 8 contigs, totaling 5,478,589 bp and 4,876 predicted coding sequences.


Renewable & Sustainable Energy Reviews | 2013

Biodiesel production in Brazil and alternative biomass feedstocks

Jessica Carvalho Bergmann; Daiva Domenech Tupinambá; Ohana Yonara Assis Costa; J.R.M Almeida; Cristine Chaves Barreto; Betania F. Quirino

Collaboration


Dive into the Cristine Chaves Barreto's collaboration.

Top Co-Authors

Avatar

Betania F. Quirino

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ohana Yonara Assis Costa

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Daiva Domenech Tupinambá

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Jessica Carvalho Bergmann

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Flávio Silva Costa

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beatriz Simas Magalhães

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge