Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cuiping Hou is active.

Publication


Featured researches published by Cuiping Hou.


Nature | 2009

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

Joseph T. Glessner; Kai Wang; Guiqing Cai; Olena Korvatska; Cecilia E. Kim; Shawn Wood; Haitao Zhang; Annette Estes; Camille W. Brune; Jonathan P. Bradfield; Marcin Imielinski; Edward C. Frackelton; Jennifer Reichert; Emily L. Crawford; Jeffrey Munson; Patrick Sleiman; Rosetta M. Chiavacci; Kiran Annaiah; Kelly Thomas; Cuiping Hou; Wendy Glaberson; James H. Flory; Frederick G. Otieno; Maria Garris; Latha Soorya; Lambertus Klei; Joseph Piven; Kacie J. Meyer; Evdokia Anagnostou; Takeshi Sakurai

Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ∼550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10-3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10-3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10-6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.


Nature | 2008

Identification of ALK as a major familial neuroblastoma predisposition gene

Yael P. Mosse; Marci Laudenslager; Luca Longo; Kristina A. Cole; Andrew K.W. Wood; Edward F. Attiyeh; Michael J. Laquaglia; Rachel Sennett; Jill Lynch; Patrizia Perri; Genevieve Laureys; Frank Speleman; Cecilia Kim; Cuiping Hou; Hakon Hakonarson; Ali Torkamani; Nicholas J. Schork; Garrett M. Brodeur; Gian Paolo Tonini; Eric Rappaport; Marcella Devoto; John M. Maris

Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23–24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.


Nature | 2009

Common genetic variants on 5p14.1 associate with autism spectrum disorders

Kai Wang; Haitao Zhang; Deqiong Ma; Maja Bucan; Joseph T. Glessner; Brett S. Abrahams; Daria Salyakina; Marcin Imielinski; Jonathan P. Bradfield; Patrick Sleiman; Cecilia E. Kim; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Nagahide Takahashi; Takeshi Sakurai; Eric Rappaport; Clara M. Lajonchere; Jeffrey Munson; Annette Estes; Olena Korvatska; Joseph Piven; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Edward I. Herman; Hongmei Dong; Ted Hutman; Marian Sigman; Sally Ozonoff; Ami Klin

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10-8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10-8 to 2.1 × 10-10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Nature Genetics | 2009

Common variants at five new loci associated with early-onset inflammatory bowel disease

Marcin Imielinski; Robert N. Baldassano; Anne M. Griffiths; Richard K. Russell; Vito Annese; Marla Dubinsky; Subra Kugathasan; Jonathan P. Bradfield; Thomas D. Walters; Patrick Sleiman; Cecilia E. Kim; Aleixo M. Muise; Kai Wang; Joseph T. Glessner; Shehzad A. Saeed; Haitao Zhang; Edward C. Frackelton; Cuiping Hou; James H. Flory; George Otieno; Rosetta M. Chiavacci; Robert W. Grundmeier; M. Castro; Anna Latiano; Bruno Dallapiccola; Joanne M. Stempak; Debra J. Abrams; Kent D. Taylor; Dermot McGovern; Melvin B. Heyman

The inflammatory bowel diseases (IBD) Crohns disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 × 10−9), 22q12 (rs2412973, P = 1.55 × 10−9), 10q22 (rs1250550, P = 5.63 × 10−9), 2q37 (rs4676410, P = 3.64 × 10−8) and 19q13.11 (rs10500264, P = 4.26 × 10−10). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohns disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.


Nature | 2009

Copy number variation at 1q21.1 associated with neuroblastoma

Sharon J. Diskin; Cuiping Hou; Joseph T. Glessner; Edward F. Attiyeh; Marci Laudenslager; Kristopher R. Bosse; Kristina A. Cole; Yael P. Mosse; Andrew C. Wood; Jill Lynch; Katlyn Pecor; Maura Diamond; Cynthia Winter; Kai Wang; Cecilia Kim; Elizabeth A. Geiger; Patrick McGrady; Alexandra I. F. Blakemore; Wendy B. London; Tamim H. Shaikh; Jonathan P. Bradfield; Struan F. A. Grant; Hongzhe Li; Marcella Devoto; Eric R. Rappaport; Hakon Hakonarson; John M. Maris

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at ∼550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent–offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.


The New England Journal of Medicine | 2010

Variants of DENND1B Associated with Asthma in Children

Patrick Sleiman; James H. Flory; Marcin Imielinski; Jonathan P. Bradfield; Kiran Annaiah; Saffron A. G. Willis-Owen; Kai Wang; Nicholas Rafaels; Sven Michel; Klaus Bønnelykke; Haitao Zhang; Cecilia E. Kim; Edward C. Frackelton; Joseph T. Glessner; Cuiping Hou; F. George Otieno; Erin Santa; Kelly Thomas; Ryan M. Smith; Wendy Glaberson; Maria Garris; Rosetta M. Chiavacci; Terri H. Beaty; Ingo Ruczinski; Jordan M. Orange; Julian L. Allen; Jonathan M. Spergel; Robert W. Grundmeier; Rasika A. Mathias; Jason D. Christie

BACKGROUND Asthma is a complex disease that has genetic and environmental causes. The genetic factors associated with susceptibility to asthma remain largely unknown. METHODS We carried out a genomewide association study involving children with asthma. The sample included 793 North American children of European ancestry with persistent asthma who required daily inhaled glucocorticoid therapy and 1988 matched controls (the discovery set). We also tested for genomewide association in an independent cohort of 917 persons of European ancestry who had asthma and 1546 matched controls (the replication set). Finally, we tested for an association between 20 single-nucleotide polymorphisms (SNPs) at chromosome 1q31 and asthma in 1667 North American children of African ancestry who had asthma and 2045 ancestrally matched controls. RESULTS In our meta-analysis of all samples from persons of European ancestry, we observed an association, with genomewide significance, between asthma and SNPs at the previously reported locus on 17q21 and an additional eight SNPs at a novel locus on 1q31. The SNP most strongly associated with asthma was rs2786098 (P=8.55x10(-9)). We observed replication of the association of asthma with SNP rs2786098 in the independent series of persons of European ancestry (combined P=9.3x10(-11)). The alternative allele of each of the eight SNPs on chromosome 1q31 was strongly associated with asthma in the children of African ancestry (P=1.6x10(-13) for the comparison across all samples). The 1q31 locus contains the 1q31 locus contains DENND1B, a gene expressed by natural killer cells and dendritic cells. DENND1B protein is predicted to interact with the tumor necrosis factor α receptor [corrected]. CONCLUSIONS We have identified a locus containing DENND1B on chromosome 1q31.3 that is associated with susceptibility to asthma.


Nucleic Acids Research | 2008

Adjustment of genomic waves in signal intensities from whole-genome SNP genotyping platforms

Sharon J. Diskin; Mingyao Li; Cuiping Hou; Shuzhang Yang; Joseph T. Glessner; Hakon Hakonarson; Maja Bucan; John M. Maris; Kai Wang

Whole-genome microarrays with large-insert clones designed to determine DNA copy number often show variation in hybridization intensity that is related to the genomic position of the clones. We found these ‘genomic waves’ to be present in Illumina and Affymetrix SNP genotyping arrays, confirming that they are not platform-specific. The causes of genomic waves are not well-understood, and they may prevent accurate inference of copy number variations (CNVs). By measuring DNA concentration for 1444 samples and by genotyping the same sample multiple times with varying DNA quantity, we demonstrated that DNA quantity correlates with the magnitude of waves. We further showed that wavy signal patterns correlate best with GC content, among multiple genomic features considered. To measure the magnitude of waves, we proposed a GC-wave factor (GCWF) measure, which is a reliable predictor of DNA quantity (correlation coefficient = 0.994 based on samples with serial dilution). Finally, we developed a computational approach by fitting regression models with GC content included as a predictor variable, and we show that this approach improves the accuracy of CNV detection. With the wide application of whole-genome SNP genotyping techniques, our wave adjustment method will be important for taking full advantage of genotyped samples for CNV analysis.


American Journal of Human Genetics | 2009

Diverse Genome-wide Association Studies Associate the IL12/IL23 Pathway with Crohn Disease

Kai Wang; Haitao Zhang; Subra Kugathasan; Vito Annese; Jonathan P. Bradfield; Richard K. Russell; Patrick Sleiman; Marcin Imielinski; Joseph T. Glessner; Cuiping Hou; David C. Wilson; Thomas D. Walters; Cecilia Kim; Edward C. Frackelton; Paolo Lionetti; Arrigo Barabino; Johan Van Limbergen; Stephen L. Guthery; Lee A. Denson; David A. Piccoli; Mingyao Li; Marla Dubinsky; Mark S. Silverberg; Anne M. Griffiths; Struan F. A. Grant; Jack Satsangi; Robert N. Baldassano; Hakon Hakonarson

Previous genome-wide association (GWA) studies typically focus on single-locus analysis, which may not have the power to detect the majority of genuinely associated loci. Here, we applied pathway analysis using Affymetrix SNP genotype data from the Wellcome Trust Case Control Consortium (WTCCC) and uncovered significant association between Crohn Disease (CD) and the IL12/IL23 pathway, harboring 20 genes (p = 8 x 10(-5)). Interestingly, the pathway contains multiple genes (IL12B and JAK2) or homologs of genes (STAT3 and CCR6) that were recently identified as genuine susceptibility genes only through meta-analysis of several GWA studies. In addition, the pathway contains other susceptibility genes for CD, including IL18R1, JUN, IL12RB1, and TYK2, which do not reach genome-wide significance by single-marker association tests. The observed pathway-specific association signal was subsequently replicated in three additional GWA studies of European and African American ancestry generated on the Illumina HumanHap550 platform. Our study suggests that examination beyond individual SNP hits, by focusing on genetic networks and pathways, is important to unleashing the true power of GWA studies.


The New England Journal of Medicine | 2008

Chromosome 6p22 Locus Associated with Clinically Aggressive Neuroblastoma

John M. Maris; Yael P. Mosse; Jonathan P. Bradfield; Cuiping Hou; Stefano Monni; Richard H. Scott; Shahab Asgharzadeh; Edward F. Attiyeh; Sharon J. Diskin; Marci Laudenslager; Cynthia Winter; Kristina A. Cole; Joseph T. Glessner; Cecilia Kim; Edward C. Frackelton; Tracy Casalunovo; Andrew W. Eckert; Mario Capasso; Eric Rappaport; Carmel McConville; Wendy B. London; Robert C. Seeger; Nazneen Rahman; Marcella Devoto; Struan F. A. Grant; Hongzhe Li; Hakon Hakonarson

BACKGROUND Neuroblastoma is a malignant condition of the developing sympathetic nervous system that most commonly affects young children and is often lethal. Its cause is not known. METHODS We performed a genomewide association study by first genotyping blood DNA samples from 1032 patients with neuroblastoma and 2043 control subjects of European descent using the Illumina HumanHap550 BeadChip. Samples from three independent groups of patients with neuroblastoma (a total of 720 patients) and 2128 control subjects were then genotyped to replicate significant associations. RESULTS We observed a significant association between neuroblastoma and the common minor alleles of three consecutive single-nucleotide polymorphisms (SNPs) at chromosome band 6p22 and containing the predicted genes FLJ22536 and FLJ44180 (P=1.71x10(-9) to 7.01x10(-10); allelic odds ratio, 1.39 to 1.40). Homozygosity for the at-risk G allele of the most significantly associated SNP, rs6939340, resulted in an increased likelihood of the development of neuroblastoma (odds ratio, 1.97; 95% confidence interval, 1.58 to 2.45). Subsequent genotyping of the three 6p22 SNPs in three independent case series confirmed our observation of an association (P=9.33x10(-15) at rs6939340 for joint analysis). Patients with neuroblastoma who were homozygous for the risk alleles at 6p22 were more likely to have metastatic (stage 4) disease (P=0.02), amplification of the MYCN oncogene in the tumor cells (P=0.006), and disease relapse (P=0.01). CONCLUSIONS A common genetic variation at chromosome band 6p22 is associated with susceptibility to neuroblastoma.


Nature Genetics | 2012

Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder

Josephine Elia; Joseph T. Glessner; Kai Wang; Nagahide Takahashi; Corina Shtir; Dexter Hadley; Patrick Sleiman; Haitao Zhang; Cecilia E. Kim; Reid J. Robison; Gholson J. Lyon; James H. Flory; Jonathan P. Bradfield; Marcin Imielinski; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Takeshi Sakurai; Cara Rabin; Frank A. Middleton; Kelly Thomas; Maria Garris; Frank D. Mentch; Christine M. Freitag; Hans-Christoph Steinhausen; Alexandre A. Todorov; Andreas Reif; Aribert Rothenberger; Barbara Franke; Eric Mick

Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ∼10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts.

Collaboration


Dive into the Cuiping Hou's collaboration.

Top Co-Authors

Avatar

Hakon Hakonarson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Joseph T. Glessner

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Rosetta M. Chiavacci

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Patrick Sleiman

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Cecilia E. Kim

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Cecilia Kim

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jonathan P. Bradfield

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Frank D. Mentch

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Haitao Zhang

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Kelly Thomas

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge