Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joseph T. Glessner is active.

Publication


Featured researches published by Joseph T. Glessner.


Nature | 2009

Autism genome-wide copy number variation reveals ubiquitin and neuronal genes

Joseph T. Glessner; Kai Wang; Guiqing Cai; Olena Korvatska; Cecilia E. Kim; Shawn Wood; Haitao Zhang; Annette Estes; Camille W. Brune; Jonathan P. Bradfield; Marcin Imielinski; Edward C. Frackelton; Jennifer Reichert; Emily L. Crawford; Jeffrey Munson; Patrick Sleiman; Rosetta M. Chiavacci; Kiran Annaiah; Kelly Thomas; Cuiping Hou; Wendy Glaberson; James H. Flory; Frederick G. Otieno; Maria Garris; Latha Soorya; Lambertus Klei; Joseph Piven; Kacie J. Meyer; Evdokia Anagnostou; Takeshi Sakurai

Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with ∼550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 × 10-3). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 × 10-3). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 × 10-6). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.


Nature | 2009

Common genetic variants on 5p14.1 associate with autism spectrum disorders

Kai Wang; Haitao Zhang; Deqiong Ma; Maja Bucan; Joseph T. Glessner; Brett S. Abrahams; Daria Salyakina; Marcin Imielinski; Jonathan P. Bradfield; Patrick Sleiman; Cecilia E. Kim; Cuiping Hou; Edward C. Frackelton; Rosetta M. Chiavacci; Nagahide Takahashi; Takeshi Sakurai; Eric Rappaport; Clara M. Lajonchere; Jeffrey Munson; Annette Estes; Olena Korvatska; Joseph Piven; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Edward I. Herman; Hongmei Dong; Ted Hutman; Marian Sigman; Sally Ozonoff; Ami Klin

Autism spectrum disorders (ASDs) represent a group of childhood neurodevelopmental and neuropsychiatric disorders characterized by deficits in verbal communication, impairment of social interaction, and restricted and repetitive patterns of interests and behaviour. To identify common genetic risk factors underlying ASDs, here we present the results of genome-wide association studies on a cohort of 780 families (3,101 subjects) with affected children, and a second cohort of 1,204 affected subjects and 6,491 control subjects, all of whom were of European ancestry. Six single nucleotide polymorphisms between cadherin 10 (CDH10) and cadherin 9 (CDH9)—two genes encoding neuronal cell-adhesion molecules—revealed strong association signals, with the most significant SNP being rs4307059 (P = 3.4 × 10-8, odds ratio = 1.19). These signals were replicated in two independent cohorts, with combined P values ranging from 7.4 × 10-8 to 2.1 × 10-10. Our results implicate neuronal cell-adhesion molecules in the pathogenesis of ASDs, and represent, to our knowledge, the first demonstration of genome-wide significant association of common variants with susceptibility to ASDs.


Nature | 2007

A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene.

Hakon Hakonarson; Struan F. A. Grant; Jonathan P. Bradfield; Luc Marchand; Cecilia E. Kim; Joseph T. Glessner; Rosemarie Grabs; Tracy Casalunovo; Shayne Taback; Edward C. Frackelton; Margaret L. Lawson; Luke J. Robinson; Robert Skraban; Yang Lu; Rosetta M. Chiavacci; Charles A. Stanley; Susan E. Kirsch; Eric Rappaport; Jordan S. Orange; Dimitri Monos; Marcella Devoto; Hui Qi Qu; Constantin Polychronakos

Type 1 diabetes (T1D) in children results from autoimmune destruction of pancreatic beta cells, leading to insufficient production of insulin. A number of genetic determinants of T1D have already been established through candidate gene studies, primarily within the major histocompatibility complex but also within other loci. To identify new genetic factors that increase the risk of T1D, we performed a genome-wide association study in a large paediatric cohort of European descent. In addition to confirming previously identified loci, we found that T1D was significantly associated with variation within a 233-kb linkage disequilibrium block on chromosome 16p13. This region contains KIAA0350, the gene product of which is predicted to be a sugar-binding, C-type lectin. Three common non-coding variants of the gene (rs2903692, rs725613 and rs17673553) in strong linkage disequilibrium reached genome-wide significance for association with T1D. A subsequent transmission disequilibrium test replication study in an independent cohort confirmed the association. These results indicate that KIAA0350 might be involved in the pathogenesis of T1D and demonstrate the utility of the genome-wide association approach in the identification of previously unsuspected genetic determinants of complex traits.


Nature | 2013

De novo mutations in histone-modifying genes in congenital heart disease.

Samir Zaidi; Murim Choi; Hiroko Wakimoto; Lijiang Ma; Jianming Jiang; John D. Overton; Angela Romano-Adesman; Robert D. Bjornson; Roger E. Breitbart; Kerry K. Brown; Nicholas Carriero; Yee Him Cheung; John Deanfield; Steve Depalma; Khalid A. Fakhro; Joseph T. Glessner; Hakon Hakonarson; Jonathan R. Kaltman; Juan P. Kaski; Richard Kim; Jennie Kline; Teresa Lee; Jeremy Leipzig; Alexander E. Lopez; Shrikant Mane; Laura E. Mitchell; Jane W. Newburger; Michael Parfenov; Itsik Pe'er; George A. Porter

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent–offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left–right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes ‘poised’ promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


PLOS ONE | 2008

Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies.

Brendan J. Keating; Sam E. Tischfield; Sarah S. Murray; Tushar Bhangale; Thomas S. Price; Joseph T. Glessner; Luana Galver; Jeffrey C. Barrett; Struan F. A. Grant; Deborah N. Farlow; Hareesh R. Chandrupatla; Mark Hansen; Saad Ajmal; George J. Papanicolaou; Yiran Guo; Mingyao Li; Paul I. W. de Bakker; Swneke D. Bailey; Alexandre Montpetit; Andrew C. Edmondson; Kent D. Taylor; Xiaowu Gai; Susanna S. Wang; Myriam Fornage; Tamim H. Shaikh; Leif Groop; Michael Boehnke; Alistair S. Hall; Andrew T. Hattersley; Edward C. Frackelton

A wealth of genetic associations for cardiovascular and metabolic phenotypes in humans has been accumulating over the last decade, in particular a large number of loci derived from recent genome wide association studies (GWAS). True complex disease-associated loci often exert modest effects, so their delineation currently requires integration of diverse phenotypic data from large studies to ensure robust meta-analyses. We have designed a gene-centric 50 K single nucleotide polymorphism (SNP) array to assess potentially relevant loci across a range of cardiovascular, metabolic and inflammatory syndromes. The array utilizes a “cosmopolitan” tagging approach to capture the genetic diversity across ∼2,000 loci in populations represented in the HapMap and SeattleSNPs projects. The array content is informed by GWAS of vascular and inflammatory disease, expression quantitative trait loci implicated in atherosclerosis, pathway based approaches and comprehensive literature searching. The custom flexibility of the array platform facilitated interrogation of loci at differing stringencies, according to a gene prioritization strategy that allows saturation of high priority loci with a greater density of markers than the existing GWAS tools, particularly in African HapMap samples. We also demonstrate that the IBC array can be used to complement GWAS, increasing coverage in high priority CVD-related loci across all major HapMap populations. DNA from over 200,000 extensively phenotyped individuals will be genotyped with this array with a significant portion of the generated data being released into the academic domain facilitating in silico replication attempts, analyses of rare variants and cross-cohort meta-analyses in diverse populations. These datasets will also facilitate more robust secondary analyses, such as explorations with alternative genetic models, epistasis and gene-environment interactions.


Nature Genetics | 2009

Common variants at five new loci associated with early-onset inflammatory bowel disease

Marcin Imielinski; Robert N. Baldassano; Anne M. Griffiths; Richard K. Russell; Vito Annese; Marla Dubinsky; Subra Kugathasan; Jonathan P. Bradfield; Thomas D. Walters; Patrick Sleiman; Cecilia E. Kim; Aleixo M. Muise; Kai Wang; Joseph T. Glessner; Shehzad A. Saeed; Haitao Zhang; Edward C. Frackelton; Cuiping Hou; James H. Flory; George Otieno; Rosetta M. Chiavacci; Robert W. Grundmeier; M. Castro; Anna Latiano; Bruno Dallapiccola; Joanne M. Stempak; Debra J. Abrams; Kent D. Taylor; Dermot McGovern; Melvin B. Heyman

The inflammatory bowel diseases (IBD) Crohns disease and ulcerative colitis are common causes of morbidity in children and young adults in the western world. Here we report the results of a genome-wide association study in early-onset IBD involving 3,426 affected individuals and 11,963 genetically matched controls recruited through international collaborations in Europe and North America, thereby extending the results from a previous study of 1,011 individuals with early-onset IBD. We have identified five new regions associated with early-onset IBD susceptibility, including 16p11 near the cytokine gene IL27 (rs8049439, P = 2.41 × 10−9), 22q12 (rs2412973, P = 1.55 × 10−9), 10q22 (rs1250550, P = 5.63 × 10−9), 2q37 (rs4676410, P = 3.64 × 10−8) and 19q13.11 (rs10500264, P = 4.26 × 10−10). Our scan also detected associations at 23 of 32 loci previously implicated in adult-onset Crohns disease and at 8 of 17 loci implicated in adult-onset ulcerative colitis, highlighting the close pathogenetic relationship between early- and adult-onset IBD.


PLOS Genetics | 2009

Genome-Wide Analyses of Exonic Copy Number Variants in a Family-Based Study Point to Novel Autism Susceptibility Genes

Maja Bucan; Brett S. Abrahams; Kai Wang; Joseph T. Glessner; Edward I. Herman; Lisa I. Sonnenblick; Ana I. Alvarez Retuerto; Marcin Imielinski; Dexter Hadley; Jonathan P. Bradfield; Cecilia Kim; Nicole Gidaya; Ingrid Lindquist; Ted Hutman; Marian Sigman; Vlad Kustanovich; Clara M. Lajonchere; Andrew Singleton; Junhyong Kim; Thomas H. Wassink; William M. McMahon; Thomas Owley; John A. Sweeney; Hilary Coon; John I. Nurnberger; Mingyao Li; Rita M. Cantor; Nancy J. Minshew; James S. Sutcliffe; Edwin H. Cook

The genetics underlying the autism spectrum disorders (ASDs) is complex and remains poorly understood. Previous work has demonstrated an important role for structural variation in a subset of cases, but has lacked the resolution necessary to move beyond detection of large regions of potential interest to identification of individual genes. To pinpoint genes likely to contribute to ASD etiology, we performed high density genotyping in 912 multiplex families from the Autism Genetics Resource Exchange (AGRE) collection and contrasted results to those obtained for 1,488 healthy controls. Through prioritization of exonic deletions (eDels), exonic duplications (eDups), and whole gene duplication events (gDups), we identified more than 150 loci harboring rare variants in multiple unrelated probands, but no controls. Importantly, 27 of these were confirmed on examination of an independent replication cohort comprised of 859 cases and an additional 1,051 controls. Rare variants at known loci, including exonic deletions at NRXN1 and whole gene duplications encompassing UBE3A and several other genes in the 15q11–q13 region, were observed in the course of these analyses. Strong support was likewise observed for previously unreported genes such as BZRAP1, an adaptor molecule known to regulate synaptic transmission, with eDels or eDups observed in twelve unrelated cases but no controls (p = 2.3×10−5). Less is known about MDGA2, likewise observed to be case-specific (p = 1.3×10−4). But, it is notable that the encoded protein shows an unexpectedly high similarity to Contactin 4 (BLAST E-value = 3×10−39), which has also been linked to disease. That hundreds of distinct rare variants were each seen only once further highlights complexity in the ASDs and points to the continued need for larger cohorts.


Genome Research | 2009

High-resolution mapping and analysis of copy number variations in the human genome: A data resource for clinical and research applications

Tamim H. Shaikh; Xiaowu Gai; Juan C. Perin; Joseph T. Glessner; Hongbo M. Xie; Kevin Murphy; R. O'Hara; Tracy Casalunovo; Laura K. Conlin; M. D'Arcy; Edward C. Frackelton; Elizabeth A. Geiger; Chad R. Haldeman-Englert; Marcin Imielinski; Cecilia Kim; Livija Medne; Kiran Annaiah; Jonathan P. Bradfield; E. Dabaghyan; Andrew W. Eckert; Chioma C. Onyiah; S. Ostapenko; Frederick G. Otieno; Erin Santa; Julie L. Shaner; Robert Skraban; Ryan M. Smith; Josephine Elia; Elizabeth Goldmuntz; Nancy B. Spinner

We present a database of copy number variations (CNVs) detected in 2026 disease-free individuals, using high-density, SNP-based oligonucleotide microarrays. This large cohort, comprised mainly of Caucasians (65.2%) and African-Americans (34.2%), was analyzed for CNVs in a single study using a uniform array platform and computational process. We have catalogued and characterized 54,462 individual CNVs, 77.8% of which were identified in multiple unrelated individuals. These nonunique CNVs mapped to 3272 distinct regions of genomic variation spanning 5.9% of the genome; 51.5% of these were previously unreported, and >85% are rare. Our annotation and analysis confirmed and extended previously reported correlations between CNVs and several genomic features such as repetitive DNA elements, segmental duplications, and genes. We demonstrate the utility of this data set in distinguishing CNVs with pathologic significance from normal variants. Together, this analysis and annotation provides a useful resource to assist with the assessment of CNVs in the contexts of human variation, disease susceptibility, and clinical molecular diagnostics.


Nature Genetics | 2010

Common variants at 5q22 associate with pediatric eosinophilic esophagitis

Marc E. Rothenberg; Jonathan M. Spergel; Joseph D. Sherrill; Kiran Annaiah; Lisa J. Martin; Antonella Cianferoni; Laura M. Gober; Cecilia Kim; Joseph T. Glessner; Edward C. Frackelton; Kelly Thomas; Carine Blanchard; Chris A. Liacouras; Ritu Verma; Seema S. Aceves; Margaret H. Collins; Terri F. Brown-Whitehorn; Phil E. Putnam; James P. Franciosi; Rosetta M. Chiavacci; J. Struan F.A. Grant; J. Pablo Abonia; Patrick Sleiman; Hakon Hakonarson

Eosinophilic esophagitis (EoE) is an allergic disorder characterized by the accumulation of eosinophils in the esophagus. We report association of EoE with variants at chromosome 5q22 encompassing TSLP and WDR36 (rs3806932, combined P = 3.19 × 10−9). TSLP is overexpressed in esophageal biopsies from individuals with EoE compared with unaffected individuals, whereas WDR36 expression is unaltered between the two groups. These data implicate the 5q22 locus in the pathogenesis of EoE and identify TSLP as the most likely candidate gene in the region.


Nature | 2009

Copy number variation at 1q21.1 associated with neuroblastoma

Sharon J. Diskin; Cuiping Hou; Joseph T. Glessner; Edward F. Attiyeh; Marci Laudenslager; Kristopher R. Bosse; Kristina A. Cole; Yael P. Mosse; Andrew C. Wood; Jill Lynch; Katlyn Pecor; Maura Diamond; Cynthia Winter; Kai Wang; Cecilia Kim; Elizabeth A. Geiger; Patrick McGrady; Alexandra I. F. Blakemore; Wendy B. London; Tamim H. Shaikh; Jonathan P. Bradfield; Struan F. A. Grant; Hongzhe Li; Marcella Devoto; Eric R. Rappaport; Hakon Hakonarson; John M. Maris

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at ∼550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent–offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.

Collaboration


Dive into the Joseph T. Glessner's collaboration.

Top Co-Authors

Avatar

Hakon Hakonarson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Struan F. A. Grant

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Jonathan P. Bradfield

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Edward C. Frackelton

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Rosetta M. Chiavacci

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Cecilia E. Kim

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Cuiping Hou

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Patrick Sleiman

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Haitao Zhang

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Kelly Thomas

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge