Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eugene J. Koay is active.

Publication


Featured researches published by Eugene J. Koay.


Journal of Clinical Investigation | 2014

Transport properties of pancreatic cancer describe gemcitabine delivery and response

Eugene J. Koay; Mark J. Truty; Vittorio Cristini; Ryan M. Thomas; Rong Chen; Deyali Chatterjee; Ya’an Kang; Priya Bhosale; Eric P. Tamm; Christopher H. Crane; Milind Javle; Matthew H. Katz; Vijaya Gottumukkala; Marc A. Rozner; Haifa Shen; J. E. Lee; Huamin Wang; Yuling Chen; William Plunkett; James L. Abbruzzese; Robert A. Wolff; Gauri R. Varadhachary; Mauro Ferrari; Jason B. Fleming

BACKGROUND The therapeutic resistance of pancreatic ductal adenocarcinoma (PDAC) is partly ascribed to ineffective delivery of chemotherapy to cancer cells. We hypothesized that physical properties at vascular, extracellular, and cellular scales influence delivery of and response to gemcitabine-based therapy. METHODS We developed a method to measure mass transport properties during routine contrast-enhanced CT scans of individual human PDAC tumors. Additionally, we evaluated gemcitabine infusion during PDAC resection in 12 patients, measuring gemcitabine incorporation into tumor DNA and correlating its uptake with human equilibrative nucleoside transporter (hENT1) levels, stromal reaction, and CT-derived mass transport properties. We also studied associations between CT-derived transport properties and clinical outcomes in patients who received preoperative gemcitabine-based chemoradiotherapy for resectable PDAC. RESULTS Transport modeling of 176 CT scans illustrated striking differences in transport properties between normal pancreas and tumor, with a wide array of enhancement profiles. Reflecting the interpatient differences in contrast enhancement, resected tumors exhibited dramatic differences in gemcitabine DNA incorporation, despite similar intravascular pharmacokinetics. Gemcitabine incorporation into tumor DNA was inversely related to CT-derived transport parameters and PDAC stromal score, after accounting for hENT1 levels. Moreover, stromal score directly correlated with CT-derived parameters. Among 110 patients who received preoperative gemcitabine-based chemoradiotherapy, CT-derived parameters correlated with pathological response and survival. CONCLUSION Gemcitabine incorporation into tumor DNA is highly variable and correlates with multiscale transport properties that can be derived from routine CT scans. Furthermore, pretherapy CT-derived properties correlate with clinically relevant endpoints. TRIAL REGISTRATION Clinicaltrials.gov NCT01276613. FUNDING Lustgarten Foundation (989161), Department of Defense (W81XWH-09-1-0212), NIH (U54CA151668, KCA088084).


Journal of Clinical Oncology | 2016

Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients With Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis

Randa Tao; Sunil Krishnan; Priya Bhosale; Milind Javle; Thomas A. Aloia; Rachna T. Shroff; Ahmed Kaseb; Andrew J. Bishop; Cameron W. Swanick; Eugene J. Koay; Howard D. Thames; Theodore S. Hong; Prajnan Das; Christopher H. Crane

PURPOSE Standard therapies for localized inoperable intrahepatic cholangiocarcinoma (IHCC) are ineffective. Advances in radiotherapy (RT) techniques and image guidance have enabled ablative doses to be delivered to large liver tumors. This study evaluated the effects of RT dose escalation in the treatment of IHCC. PATIENTS AND METHODS Seventy-nine consecutive patients with inoperable IHCC were identified and treated with definitive RT from 2002 to 2014. At diagnosis, the median tumor size was 7.9 cm (range, 2.2 to 17 cm). Seventy patients (89%) received systemic chemotherapy before RT. RT doses were 35 to 100 Gy (median, 58.05 Gy) in three to 30 fractions for a median biologic equivalent dose (BED) of 80.5 Gy (range, 43.75 to 180 Gy). RESULTS Median follow-up time for patients alive at time of analysis was 33 months (range, 11 to 93 months). Median overall survival (OS) time after diagnosis was 30 months; 3-year OS rate was 44%. Radiation dose was the single most important prognostic factor; higher doses correlated with an improved local control (LC) rate and OS. The 3-year OS rate for patients receiving BED greater than 80.5 Gy was 73% versus 38% for those receiving lower doses (P = .017); 3-year LC rate was significantly higher (78%) after a BED greater than 80.5 Gy than after lower doses (45%, P = .04). BED as a continuous variable significantly affected LC (P = .009) and OS (P = .004). There were no significant treatment-related toxicities. CONCLUSION Delivery of higher doses of RT improves LC and OS in inoperable IHCC. A BED greater than 80.5 Gy seems to be an ablative dose of RT for large IHCCs, with long-term survival rates that compare favorably with resection.


Nature Biomedical Engineering | 2017

Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring

Kai Liang; Fei Liu; Jia Fan; Dali Sun; Chang Liu; Christopher J. Lyon; David W. Bernard; Yan Li; Kenji Yokoi; Matthew H. Katz; Eugene J. Koay; Zhen Zhao; Ye Hu

Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples, are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpensive nanoplasmon-enhanced scattering (nPES) assay that directly quantifies tumor-derived EVs from as little as 1 μL of plasma. The assay uses the binding of antibody-conjugated gold nanospheres and nanorods to EVs captured by EV-specific antibodies on a sensor chip to produce a local plasmon effect that enhances tumour-derived EV detection sensitivity and specificity. We identified a pancreatic cancer EV biomarker, ephrin type-A receptor 2 (EphA2), and demonstrate that an nPES assay for EphA2-EVs distinguishes pancreatic cancer patients from pancreatitis patients and healthy subjects. EphA2-EVs were also informative in staging tumour progression and in detecting early responses to neoadjuvant therapy, with better performance than a conventional enzyme-linked immunosorbent assay. The nPES assay can be easily refined for clinical use, and readily adapted for diagnosis and monitoring of other conditions with disease-specific EV biomarkers.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements

Jennifer Pascal; Elaine L. Bearer; Zhihui Wang; Eugene J. Koay; Steven A. Curley; Vittorio Cristini

Physical properties of the microenvironment influence penetration of drugs into tumors. Here, we develop a mathematical model to predict the outcome of chemotherapy based on the physical laws of diffusion. The most important parameters in the model are the volume fraction occupied by tumor blood vessels and their average diameter. Drug delivery to cells, and kill thereof, are mediated by these microenvironmental properties and affected by the diffusion penetration distance after extravasation. To calculate parameter values we fit the model to histopathology measurements of the fraction of tumor killed after chemotherapy in human patients with colorectal cancer metastatic to liver (coefficient of determination R2 = 0.94). To validate the model in a different tumor type, we input patient-specific model parameter values from glioblastoma; the model successfully predicts extent of tumor kill after chemotherapy (R2 = 0.7–0.91). Toward prospective clinical translation, we calculate blood volume fraction parameter values from in vivo contrast-enhanced computed tomography imaging from a separate cohort of patients with colorectal cancer metastatic to liver, and demonstrate accurate model predictions of individual patient responses (average relative error = 15%). Here, patient-specific data from either in vivo imaging or histopathology drives output of the model’s formulas. Values obtained from standard clinical diagnostic measurements for each individual are entered into the model, producing accurate predictions of tumor kill after chemotherapy. Clinical translation will enable the rational design of individualized treatment strategies such as amount, frequency, and delivery platform of drug and the need for ancillary non–drug-based treatment.


Journal of Gastrointestinal Surgery | 2017

Preoperative Therapy and Pancreatoduodenectomy for Pancreatic Ductal Adenocarcinoma: a 25-Year Single-Institution Experience

Jordan M. Cloyd; Matthew H. Katz; Laura Prakash; Gauri R. Varadhachary; Robert A. Wolff; Rachna T. Shroff; Milind Javle; David R. Fogelman; Michael J. Overman; Christopher H. Crane; Eugene J. Koay; Prajnan Das; Sunil Krishnan; Bruce D. Minsky; Jeffrey H. Lee; Manoop S. Bhutani; Brian Weston; William A. Ross; Priya Bhosale; Eric P. Tamm; Huamin Wang; Anirban Maitra; Michael P. Kim; Thomas A. Aloia; J. N. Vauthey; Jason B. Fleming; James L. Abbruzzese; Peter W.T. Pisters; Douglas B. Evans; Jeffrey E. Lee

BackgroundThe purpose of this study was to evaluate a single-institution experience with delivery of preoperative therapy to patients with pancreatic ductal adenocarcinoma (PDAC) prior to pancreatoduodenectomy (PD).MethodsConsecutive patients (622) with PDAC who underwent PD following chemotherapy and/or chemoradiation between 1990 and 2014 were retrospectively reviewed. Preoperative treatment regimens, clinicopathologic characteristics, operative details, and long-term outcomes in four successive time periods (1990–1999, 2000–2004, 2005–2009, 2010–2014) were evaluated and compared. ResultsThe average number of patients per year who underwent PD following preoperative therapy as well as the proportion of operations performed for borderline resectable and locally advanced (BR/LA) tumors increased over time. The use of induction systemic chemotherapy, as well as postoperative adjuvant chemotherapy, also increased over time. Throughout the study period, the mean EBL decreased while R0 margin rates and vascular resection rates increased overall. Despite the increase in BR/LA resections, locoregional recurrence (LR) rates remained similar over time, and overall survival (OS) improved significantly (median 24.1, 28.1, 37.3, 43.4 months, respectively, p < 0.0001).ConclusionsDespite increases in case complexity, relatively low rates of LR have been maintained while significant improvements in OS have been observed. Further improvements in patient outcomes will likely require disruptive advances in systemic therapy.


Radiotherapy and Oncology | 2014

Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer

Gary V. Walker; Musaddiq J. Awan; Randa Tao; Eugene J. Koay; Nicholas S. Boehling; Jonathan D. Grant; Dean F. Sittig; G.B. Gunn; Adam S. Garden; Jack Phan; William H. Morrison; David I. Rosenthal; Abdallah S.R. Mohamed; Clifton D. Fuller

BACKGROUND AND PURPOSE Target volumes and organs-at-risk (OARs) for radiotherapy (RT) planning are manually defined, which is a tedious and inaccurate process. We sought to assess the feasibility, time reduction, and acceptability of an atlas-based autosegmentation (AS) compared to manual segmentation (MS) of OARs. MATERIALS AND METHODS A commercial platform generated 16 OARs. Resident physicians were randomly assigned to modify AS OAR (AS+R) or to draw MS OAR followed by attending physician correction. Dice similarity coefficient (DSC) was used to measure overlap between groups compared with attending approved OARs (DSC=1 means perfect overlap). 40 cases were segmented. RESULTS Mean ± SD segmentation time in the AS+R group was 19.7 ± 8.0 min, compared to 28.5 ± 8.0 min in the MS cohort, amounting to a 30.9% time reduction (Wilcoxon p<0.01). For each OAR, AS DSC was statistically different from both AS+R and MS ROIs (all Steel-Dwass p<0.01) except the spinal cord and the mandible, suggesting oversight of AS/MS processes is required; AS+R and MS DSCs were non-different. AS compared to attending approved OAR DSCs varied considerably, with a chiasm mean ± SD DSC of 0.37 ± 0.32 and brainstem of 0.97 ± 0.03. CONCLUSIONS Autosegmentation provides a time savings in head and neck regions of interest generation. However, attending physician approval remains vital.


Practical radiation oncology | 2016

Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline

Alvin R. Cabrera; John P. Kirkpatrick; John B. Fiveash; Helen A. Shih; Eugene J. Koay; Stephen Lutz; Joshua Petit; Samuel T. Chao; Paul D. Brown; Michael A. Vogelbaum; David A. Reardon; Arnab Chakravarti; Patrick Y. Wen; Eric L. Chang

PURPOSE To present evidence-based guidelines for radiation therapy in treating glioblastoma not arising from the brainstem. METHODS AND MATERIALS The American Society for Radiation Oncology (ASTRO) convened the Glioblastoma Guideline Panel to perform a systematic literature review investigating the following: (1) Is radiation therapy indicated after biopsy/resection of glioblastoma and how does systemic therapy modify its effects? (2) What is the optimal dose-fractionation schedule for external beam radiation therapy after biopsy/resection of glioblastoma and how might treatment vary based on pretreatment characteristics such as age or performance status? (3) What are ideal target volumes for curative-intent external beam radiation therapy of glioblastoma? (4) What is the role of reirradiation among glioblastoma patients whose disease recurs following completion of standard first-line therapy? Guideline recommendations were created using predefined consensus-building methodology supported by ASTRO-approved tools for grading evidence quality and recommendation strength. RESULTS Following biopsy or resection, glioblastoma patients with reasonable performance status up to 70 years of age should receive conventionally fractionated radiation therapy (eg, 60 Gy in 2-Gy fractions) with concurrent and adjuvant temozolomide. Routine addition of bevacizumab to this regimen is not recommended. Elderly patients (≥70 years of age) with reasonable performance status should receive hypofractionated radiation therapy (eg, 40 Gy in 2.66-Gy fractions); preliminary evidence may support adding concurrent and adjuvant temozolomide to this regimen. Partial brain irradiation is the standard paradigm for radiation delivery. A variety of acceptable strategies exist for target volume definition, generally involving 2 phases (primary and boost volumes) or 1 phase (single volume). For recurrent glioblastoma, focal reirradiation can be considered in younger patients with good performance status. CONCLUSIONS Radiation therapy occupies an integral role in treating glioblastoma. Whether and how radiation therapy should be applied depends on characteristics specific to tumor and patient, including age and performance status.


Cancer | 2016

Solutions that enable ablative radiotherapy for large liver tumors: Fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance

Christopher H. Crane; Eugene J. Koay

The emergence and success of stereotactic body radiation therapy (SBRT) for the treatment of lung cancer have led to its rapid adoption for liver cancers. SBRT can achieve excellent results for small liver tumors. However, the vast majority of physicians interpret SBRT as meaning doses of radiation (range, 4‐20 Gray [Gy]) that may not be ablative but are delivered within about 1 week (ie, in 3‐6 fractions). Adherence to this approach has limited the effectiveness of SBRT for large liver tumors (>7 cm) because of the need to reduce doses to meet organ constraints. The prognosis for patients who present with large liver tumors is poor, with a median survival ≤12 months, and most of these patients die from tumor‐related liver failure. Herein, the authors present a comprehensive solution to achieve ablative SBRT doses for patients with large liver tumors by using a combination of classic, modern, and novel concepts of radiotherapy: fractionation, dose painting, motion management, image guidance, and simultaneous integrated protection. The authors discuss these concepts in the context of large, inoperable liver tumors and review how this approach can substantially prolong survival for patients, most of whom otherwise have a very poor prognosis and few effective treatment options. Cancer 2016;122:1974–86.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport

Dickson K. Kirui; Eugene J. Koay; Xiaojing Guo; Vittorio Cristini; Haifa Shen; Mauro Ferrari

The abnormal tumor vasculature presents a major challenge to the adequate delivery of chemotherapeutics, often limiting efficacy. We developed a nanoparticle-based technique to deliver localized mild hyperthermia (MHT) used to transiently alter tumor vascular transport properties and enhance transport of macromolecules into tumor interstitium. The strategy involved administering and localizing accumulation of stealth gold nanorods (GNRs, 103 μg of GNRs/g of tumor), and irradiating tumor with a low-photon laser flux (1 W/cm(2)) to generate MHT. The treatment increased vascular permeability within 24 h after treatment, allowing enhanced transport of macromolecules up to 54 nm in size. A mathematical model is used to describe changes in tumor mass transport properties where the rate of macromolecular exchange between interstitial and vascular region (R) and maximum dye enhancement (Ymax) of 23-nm dextran dye is analytically solved. During enhanced permeability, R increased by 200% while Ymax increased by 30% relative to untreated group in pancreatic CAPAN-1 tumors. MHT treatment also enhanced transport of larger dextran dye (54 nm) as assessed by intravital microscopy, without causing occlusive cellular damage. Enhanced vascular transport was prolonged for up to 24 h after treatment, but reversible with transport parameters returning to basal levels after 36 h. This study indicates that localized mild hyperthermia treatment opens a transient time-window with which to enable and augment macromolecule transport and potentially improve therapeutic efficacy. From the clinical editor: In this study, local intra-tumor mild hyperthermia is induced using a nanoparticle-based approach utilizing stealth gold nanorods and irradiating the tumor with low-photon laser flux, resulting in locally increased vascular permeability enabling enhanced delivery of therapeutics, including macromolecules up to 54 nm in size. Similar approaches would be very helpful in addressing treatment-resistant malignancies in clinical practice.


Oncotarget | 2016

Quantitative imaging to evaluate malignant potential of IPMNs

Alexander Hanania; Leonidas E. Bantis; Ziding Feng; Huamin Wang; Eric P. Tamm; Matthew H. Katz; Anirban Maitra; Eugene J. Koay

Objective To investigate using quantitative imaging to assess the malignant potential of intraductal papillary mucinous neoplasms (IPMNs) in the pancreas. Background Pancreatic cysts are identified in over 2% of the population and a subset of these, including intraductal papillary mucinous neoplasms (IPMNs), represent pre-malignant lesions. Unfortunately, clinicians cannot accurately predict which of these lesions are likely to progress to pancreatic ductal adenocarcinoma (PDAC). Methods We investigated 360 imaging features within the domains of intensity, texture and shape using pancreatic protocol CT images in 53 patients diagnosed with IPMN (34 “high-grade” [HG] and 19 “low-grade” [LG]) who subsequently underwent surgical resection. We evaluated the performance of these features as well as the Fukuoka criteria for pancreatic cyst resection. Results In our cohort, the Fukuoka criteria had a false positive rate of 36%. We identified 14 imaging biomarkers within Gray-Level Co-Occurrence Matrix (GLCM) that predicted histopathological grade within cyst contours. The most predictive marker differentiated LG and HG lesions with an area under the curve (AUC) of .82 at a sensitivity of 85% and specificity of 68%. Using a cross-validated design, the best logistic regression yielded an AUC of 0.96 (σ = .05) at a sensitivity of 97% and specificity of 88%. Based on the principal component analysis, HG IPMNs demonstrated a pattern of separation from LG IPMNs. Conclusions HG IPMNs appear to have distinct imaging properties. Further validation of these findings may address a major clinical need in this population by identifying those most likely to benefit from surgical resection.

Collaboration


Dive into the Eugene J. Koay's collaboration.

Top Co-Authors

Avatar

Prajnan Das

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Christopher H. Crane

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jason B. Fleming

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Mauro Ferrari

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Cullen M. Taniguchi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Huamin Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joseph M. Herman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Matthew H. Katz

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Milind Javle

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert A. Wolff

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge