Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Curt Scharfe is active.

Publication


Featured researches published by Curt Scharfe.


Nature | 2003

Role of duplicate genes in genetic robustness against null mutations.

Zhenglong Gu; Lars M. Steinmetz; Xun Gu; Curt Scharfe; Ronald W. Davis; Wen-Hsiung Li

Deleting a gene in an organism often has little phenotypic effect, owing to two mechanisms of compensation. The first is the existence of duplicate genes: that is, the loss of function in one copy can be compensated by the other copy or copies. The second mechanism of compensation stems from alternative metabolic pathways, regulatory networks, and so on. The relative importance of the two mechanisms has not been investigated except for a limited study, which suggested that the role of duplicate genes in compensation is negligible. The availability of fitness data for a nearly complete set of single-gene-deletion mutants of the Saccharomyces cerevisiae genome has enabled us to carry out a genome-wide evaluation of the role of duplicate genes in genetic robustness against null mutations. Here we show that there is a significantly higher probability of functional compensation for a duplicate gene than for a singleton, a high correlation between the frequency of compensation and the sequence similarity of two duplicates, and a higher probability of a severe fitness effect when the duplicate copy that is more highly expressed is deleted. We estimate that in S. cerevisiae at least a quarter of those gene deletions that have no phenotype are compensated by duplicate genes.


Nature Genetics | 2002

Systematic screen for human disease genes in yeast

Lars M. Steinmetz; Curt Scharfe; Adam M. Deutschbauer; Dejana Mokranjac; Zelek S. Herman; Ted Jones; Angela M. Chu; Guri Giaever; Holger Prokisch; Peter J. Oefner; Ronald W. Davis

High similarity between yeast and human mitochondria allows functional genomic study of Saccharomyces cerevisiae to be used to identify human genes involved in disease. So far, 102 heritable disorders have been attributed to defects in a quarter of the known nuclear-encoded mitochondrial proteins in humans. Many mitochondrial diseases remain unexplained, however, in part because only 40–60% of the presumed 700–1,000 proteins involved in mitochondrial function and biogenesis have been identified. Here we apply a systematic functional screen using the pre-existing whole-genome pool of yeast deletion mutants to identify mitochondrial proteins. Three million measurements of strain fitness identified 466 genes whose deletions impaired mitochondrial respiration, of which 265 were new. Our approach gave higher selection than other systematic approaches, including fivefold greater selection than gene expression analysis. To apply these advantages to human disorders involving mitochondria, human orthologs were identified and linked to heritable diseases using genomic map positions.


Genetics | 2005

The Role of Selection in the Evolution of Human Mitochondrial Genomes

Toomas Kivisild; Peidong Shen; Dennis P. Wall; Bao H. Do; Raphael Sung; Karen Davis; Giuseppe Passarino; Peter A. Underhill; Curt Scharfe; Antonio Torroni; Rosaria Scozzari; David Modiano; Alfredo Coppa; Peter de Knijff; Marcus W. Feldman; Luca Cavalli-Sforza; Peter J. Oefner

High mutation rate in mammalian mitochondrial DNA generates a highly divergent pool of alleles even within species that have dispersed and expanded in size recently. Phylogenetic analysis of 277 human mitochondrial genomes revealed a significant (P < 0.01) excess of rRNA and nonsynonymous base substitutions among hotspots of recurrent mutation. Most hotspots involved transitions from guanine to adenine that, with thymine-to-cytosine transitions, illustrate the asymmetric bias in codon usage at synonymous sites on the heavy-strand DNA. The mitochondrion-encoded tRNAThr varied significantly more than any other tRNA gene. Threonine and valine codons were involved in 259 of the 414 amino acid replacements observed. The ratio of nonsynonymous changes from and to threonine and valine differed significantly (P = 0.003) between populations with neutral (22/58) and populations with significantly negative Tajimas D values (70/76), independent of their geographic location. In contrast to a recent suggestion that the excess of nonsilent mutations is characteristic of Arctic populations, implying their role in cold adaptation, we demonstrate that the surplus of nonsynonymous mutations is a general feature of the young branches of the phylogenetic tree, affecting also those that are found only in Africa. We introduce a new calibration method of the mutation rate of synonymous transitions to estimate the coalescent times of mtDNA haplogroups.


Nature Genetics | 2000

The complete form of X-linked congenital stationary night blindness is caused by mutations in a gene encoding a leucine-rich repeat protein

Carsten M. Pusch; Christina Zeitz; Oliver Brandau; Katrin Pesch; Helene Achatz; Silke Feil; Curt Scharfe; Johannes Maurer; Felix K. Jacobi; Alfred J. L. G. Pinckers; Sten Andréasson; Alison J. Hardcastle; Bernd Wissinger; Wolfgang Berger; Alfons Meindl

X-linked congenital stationary night blindness (XLCSNB) is characterized by impaired scotopic vision with associated ocular symptoms such as myopia, hyperopia, nystagmus and reduced visual acuity. Genetic mapping in families with XLCSNB revealed two different loci on the proximal short arm of the X chromosome. These two genetic subtypes can be distinguished on the basis of electroretinogram (ERG) responses and psychophysical testing as a complete (CSNB1) and an incomplete (CSNB2) form. The CSNB1 locus has been mapped to a 5-cM linkage interval in Xp11.4 (refs 2,5–7). Here we construct and analyse a contig between the markers DXS993 and DXS228, leading to the identification of a new gene mutated in CSNB1 patients. It is partially deleted in 3 families and mutation analysis in a further 21 families detected another 13 different mutations. This gene, designated NYX, encodes a protein of 481 amino acids (nyctalopin) and is expressed at low levels in tissues including retina, brain, testis and muscle. The predicted polypeptide is a glycosylphosphatidylinositol (GPI)-anchored extracellular protein with 11 typical and 2 cysteine-rich, leucine-rich repeats (LRRs). This motif is important for protein-protein interactions and members of the LRR superfamily are involved in cell adhesion and axon guidance. Future functional analysis of nyctalopin might therefore give insight into the fine-regulation of cell-cell contacts in the retina.


PLOS Biology | 2004

Integrative Analysis of the Mitochondrial Proteome in Yeast

Holger Prokisch; Curt Scharfe; David G. Camp; Wenzhong Xiao; Lior David; Christophe Andreoli; Matthew E. Monroe; Ronald J. Moore; Marina A. Gritsenko; Christian Kozany; Kim K. Hixson; Heather M. Mottaz; Hans Zischka; Marius Ueffing; Zelek S. Herman; Ronald W. Davis; Thomas Meitinger; Peter J. Oefner; Richard D. Smith; Lars M. Steinmetz

In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.


Nucleic Acids Research | 2006

MitoP2: the mitochondrial proteome database—now including mouse data

Holger Prokisch; Christophe Andreoli; Uwe Ahting; K. Heiss; Andreas Ruepp; Curt Scharfe; Thomas Meitinger

The MitoP2 database () integrates information on mitochondrial proteins, their molecular functions and associated diseases. The central database features are manually annotated reference proteins localized or functionally associated with mitochondria supplied for yeast, human and mouse. MitoP2 enables (i) the identification of putative orthologous proteins between these species to study evolutionarily conserved functions and pathways; (ii) the integration of data from systematic genome-wide studies such as proteomics and deletion phenotype screening; (iii) the prediction of novel mitochondrial proteins using data integration and the assignment of evidence scores; and (iv) systematic searches that aim to find the genes that underlie common and rare mitochondrial diseases. The data and analysis files are referenced to data sources in PubMed and other online databases and can be easily downloaded. MitoP2 users can explore the relationship between mitochondrial dysfunctions and disease and utilize this information to conduct systems biology approaches on mitochondria.


Nucleic Acids Research | 2004

MitoP2, an integrated database on mitochondrial proteins in yeast and man

Christophe Andreoli; Holger Prokisch; Konstanze Hörtnagel; Jakob C. Mueller; Martin Münsterkötter; Curt Scharfe; Thomas Meitinger

The aim of the MitoP2 database (http://ihg.gsf.de/mitop2) is to provide a comprehensive list of mitochondrial proteins of yeast and man. Based on the current literature we created an annotated reference set of yeast and human proteins. In addition, data sets relevant to the study of the mitochondrial proteome are integrated and accessible via search tools and links. They include computational predictions of signalling sequences, and summarize results from proteome mapping, mutant screening, expression profiling, protein-protein interaction and cellular sublocalization studies. For each individual approach, specificity and sensitivity for allocating mitochondrial proteins was calculated. By providing the evidence for mitochondrial candidate proteins the MitoP2 database lends itself to the genetic characterization of human mitochondriopathies.


PLOS Computational Biology | 2009

Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes

Curt Scharfe; Henry Horng-Shing Lu; Jutta K. Neuenburg; Edward A. Allen; Guan-Cheng Li; Thomas Klopstock; Tina M. Cowan; Gregory M. Enns; Ronald W. Davis

Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes.


Journal of Medical Genetics | 2000

A novel mutation in the thiamine responsive megaloblastic anaemia gene SLC19A2 in a patient with deficiency of respiratory chain complex I

Curt Scharfe; Michael Hauschild; Thomas Klopstock; Antoon J M Janssen; Peter H Heidemann; Thomas Meitinger; Michaela Jaksch

The thiamine transporter geneSLC19A2 was recently found to be mutated in thiamine responsive megaloblastic anaemia with diabetes and deafness (TRMA, Rogers syndrome), an early onset autosomal recessive disorder. We now report a novel G1074A transition mutation in exon 4 of theSLC19A2 gene, predicting a Trp358 to ter change, in a girl with consanguineous parents. In addition to the typical triad of Rogers syndrome, the girl presented with short stature, hepatosplenomegaly, retinal degeneration, and a brain MRI lesion. Both muscle and skin biopsies were obtained before high dose thiamine supplementation. While no mitochondrial abnormalities were seen on morphological examination of muscle, biochemical analysis showed a severe deficiency of pyruvate dehydrogenase and complex I of the respiratory chain. In the patients fibroblasts, the supplementation with high doses of thiamine resulted in restoration of complex I activity. In conclusion, we provide evidence that thiamine deficiency affects complex I activity. The clinical features of TRMA, resembling in part those found in typical mitochondrial disorders with complex I deficiency, may be caused by a secondary defect in mitochondrial energy production.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-quality DNA sequence capture of 524 disease candidate genes

Peidong Shen; Wenyi Wang; Sujatha Krishnakumar; Curtis Palm; Aung Kyaw Chi; Gregory M. Enns; Ronald W. Davis; Terence P. Speed; Michael Mindrinos; Curt Scharfe

The accurate and complete selection of candidate genomic regions from a DNA sample before sequencing is critical in molecular diagnostics. Several recently developed technologies await substantial improvements in performance, cost, and multiplex sample processing. Here we present the utility of long padlock probes (LPPs) for targeted exon capture followed by array-based sequencing. We found that on average 92% of 5,471 exons from 524 nuclear-encoded mitochondrial genes were successfully amplified from genomic DNA from 63 individuals. Only 144 exons did not amplify in any sample due to high GC content. One LPP was sufficient to capture sequences from <100–500 bp in length and only a single-tube capture reaction and one microarray was required per sample. Our approach was highly reproducible and quick (<8 h) and detected DNA variants at high accuracy (false discovery rate 1%, false negative rate 3%) on the basis of known sample SNPs and Sanger sequence verification. In a patient with clinical and biochemical presentation of ornithine transcarbamylase (OTC) deficiency, we identified copy-number differences in the OTC gene at exon-level resolution. This shows the ability of LPPs to accurately preserve a samples genome information and provides a cost-effective strategy to identify both single nucleotide changes and structural variants in targeted resequencing.

Collaboration


Dive into the Curt Scharfe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenyi Wang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge