Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gregory M. Enns is active.

Publication


Featured researches published by Gregory M. Enns.


JAMA | 2014

Clinical Interpretation and Implications of Whole-Genome Sequencing

Frederick E. Dewey; Megan E. Grove; Cuiping Pan; Benjamin A. Goldstein; Jonathan A. Bernstein; Hassan Chaib; Jason D. Merker; Rachel L. Goldfeder; Gregory M. Enns; Sean P. David; Neda Pakdaman; Kelly E. Ormond; Colleen Caleshu; Kerry Kingham; Teri E. Klein; Michelle Whirl-Carrillo; Kenneth Sakamoto; Matthew T. Wheeler; Atul J. Butte; James M. Ford; Linda M. Boxer; John P. A. Ioannidis; Alan C. Yeung; Russ B. Altman; Themistocles L. Assimes; Michael Snyder; Euan A. Ashley; Thomas Quertermous

IMPORTANCE Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95% CI, 0.40-0.64), and reclassified 69% of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine.


American Journal of Human Genetics | 2013

Mutations in B3GALNT2 Cause Congenital Muscular Dystrophy and Hypoglycosylation of α-Dystroglycan

Elizabeth Stevens; Keren J. Carss; Sebahattin Cirak; A. Reghan Foley; Silvia Torelli; Tobias Willer; Dimira E. Tambunan; Shu Yau; Lina Brodd; C. Sewry; L. Feng; Goknur Haliloglu; Diclehan Orhan; William B. Dobyns; Gregory M. Enns; Melanie A. Manning; Amanda Krause; Mustafa A. Salih; Christopher A. Walsh; Kevin P. Campbell; M. Chiara Manzini; Derek L. Stemple; Yung Yao Lin; Francesco Muntoni

Mutations in several known or putative glycosyltransferases cause glycosylation defects in α-dystroglycan (α-DG), an integral component of the dystrophin glycoprotein complex. The hypoglycosylation reduces the ability of α-DG to bind laminin and other extracellular matrix ligands and is responsible for the pathogenesis of an inherited subset of muscular dystrophies known as the dystroglycanopathies. By exome and Sanger sequencing we identified two individuals affected by a dystroglycanopathy with mutations in β-1,3-N-acetylgalactosaminyltransferase 2 (B3GALNT2). B3GALNT2 transfers N-acetyl galactosamine (GalNAc) in a β-1,3 linkage to N-acetyl glucosamine (GlcNAc). A subsequent study of a separate cohort of individuals identified recessive mutations in four additional cases that were all affected by dystroglycanopathy with structural brain involvement. We show that functional dystroglycan glycosylation was reduced in the fibroblasts and muscle (when available) of these individuals via flow cytometry, immunoblotting, and immunocytochemistry. B3GALNT2 localized to the endoplasmic reticulum, and this localization was perturbed by some of the missense mutations identified. Moreover, knockdown of b3galnt2 in zebrafish recapitulated the human congenital muscular dystrophy phenotype with reduced motility, brain abnormalities, and disordered muscle fibers with evidence of damage to both the myosepta and the sarcolemma. Functional dystroglycan glycosylation was also reduced in the b3galnt2 knockdown zebrafish embryos. Together these results demonstrate a role for B3GALNT2 in the glycosylation of α-DG and show that B3GALNT2 mutations can cause dystroglycanopathy with muscle and brain involvement.


Molecular Genetics and Metabolism | 2012

Initial experience in the treatment of inherited mitochondrial disease with EPI-743.

Gregory M. Enns; Stephen L. Kinsman; Susan Perlman; Kenneth Spicer; Jose E. Abdenur; Bruce H. Cohen; Akiko Amagata; Adam Barnes; Viktoria Kheifets; William D. Shrader; Martin Thoolen; Francis G. Blankenberg; Guy M. Miller

Inherited mitochondrial respiratory chain disorders are progressive, life-threatening conditions for which there are limited supportive treatment options and no approved drugs. Because of this unmet medical need, as well as the implication of mitochondrial dysfunction as a contributor to more common age-related and neurodegenerative disorders, mitochondrial diseases represent an important therapeutic target. Thirteen children and one adult with genetically-confirmed mitochondrial disease (polymerase γ deficiency, n=4; Leigh syndrome, n=4; MELAS, n=3; mtDNA deletion syndrome, n=2; Friedreich ataxia, n=1) at risk for progressing to end-of-life care within 90 days were treated with EPI-743, a novel para-benzoquinone therapeutic, in a subject controlled, open-label study. Serial measures of safety and efficacy were obtained that included biochemical, neurological, quality-of-life, and brain redox assessments using technetium-99m-hexamethylpropyleneamine oxime (HMPAO) single photon emission computed tomography (SPECT) radionuclide imaging. Twelve patients treated with EPI-743 have survived; one polymerase γ deficiency patient died after developing pneumonia and one patient with Surf-1 deficiency died after completion of the protocol. Of the 12 survivors, 11 demonstrated clinical improvement, with 3 showing partial relapse, and 10 of the survivors also had an improvement in quality-of-life scores at the end of the 13-week emergency treatment protocol. HMPAO SPECT scans correlated with clinical response; increased regional and whole brain HMPAO uptake was noted in the clinical responders and the one subject who did not respond clinically had decreased regional and whole brain HMPAO uptake. EPI-743 has modified disease progression in >90% of patients in this open-label study as assessed by clinical, quality-of-life, and non-invasive brain imaging parameters. Data obtained herein suggest that EPI-743 may represent a new drug for the treatment of inherited mitochondrial respiratory chain disorders. Prospective controlled trials will be undertaken to substantiate these initial promising observations. Furthermore, HMPAO SPECT imaging may be a valuable tool for the detection of central nervous system redox defects and for monitoring response to treatments directed at modulating abnormal redox.


American Journal of Medical Genetics | 1998

Congenital diaphragmatic defects and associated syndromes, malformations, and chromosome anomalies: a retrospective study of 60 patients and literature review.

Gregory M. Enns; Victoria A. Cox; Ruth B. Goldstein; David L Gibbs; Michael R. Harrison; Mahin Golabi

Congenital diaphragmatic defects (CDDs) may occur in malformation syndromes of varied causes. Syndromic cases of CDDs due to chromosomal defects, autosomal recessive, autosomal dominant, or X-linked inheritance have been described. In order to determine the frequency and nature of syndromes, malformations, and chromosome abnormalities associated with CDDs, we reviewed the records of all patients with CDDs evaluated over a 4-year period. During the 4-year interval, a total of 60 patients was evaluated. Of these, 29 had a therapeutic or spontaneous abortion, and 31 received postnatal care. On prenatal ultrasonography, 20 of 60 (33%) of patients with CDDs had additional anomalies. Additional anomalies, besides CDDs, were present in 15 of 31 (48%) of liveborn patients on newborn evaluation. In total, 16 patients with multiple anomalies were evaluated. Of these, 12 of 16 (75%) had additional abnormalities detected by prenatal ultrasonography. The 4 of 16 (25%) without additional anomalies on prenatal sonography had multiple anomalies found neonatally, lethal multiple pterygium syndrome being diagnosed in one case. Prenatal chromosome analysis was performed in 7 of 16 patients, and all had postnatal karyotypes. All initial karyotypes were normal. Tetrasomy 12p was documented on postnatal fibroblast analysis in one case who had percutaneous umbilical blood sampling (PUBS). Syndromes diagnosed postnatally in 7 of 16 patients (44%) include: Fryns syndrome (2), Simpson-Golabi-Behmel syndrome (2), tetrasomy 12p (1), Brachmann-de Lange syndrome (1), and lethal multiple pterygium syndrome (1). We were unable to make a specific diagnosis in 9 of 16 patients (56%) with multiple malformations. In patients with CDDs, a normal prenatal karyotype, especially if obtained by PUBS, and absence of other detected abnormalities by fetal ultrasonography, do not exclude the presence of other major anomalies, including chromosome abnormalities and severe multiple malformation syndromes.


Human Mutation | 2008

Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase.

David Dimmock; Qing Zhang; Carlo Dionisi-Vici; Rosalba Carrozzo; Joseph T.C. Shieh; L. Y. Tang; Cavatina K. Truong; Eric S. Schmitt; M. Sifry-Platt; S. Lucioli; Filippo M. Santorelli; Can Ficicioglu; M. Rodriguez; K. Wierenga; Gregory M. Enns; Nicola Longo; M. H. Lipson; H.D. Vallance; William J. Craigen; Fernando Scaglia; L. J. Wong

Published mutations in deoxyguanosine kinase (DGUOK) cause mitochondrial DNA depletion and a clinical phenotype that consists of neonatal liver failure, nystagmus and hypotonia. In this series, we have identified 15 different mutations in the DGUOK gene from 9 kindreds. Among them, 12 have not previously been reported. Nonsense, splice site, or frame‐shift mutations that produce truncated proteins predominate over missense mutations. All patients who harbor null mutations had early onset liver failure and significant neurological disease. These patients have all died before 2‐years of age. Conversely, two patients carrying missense mutations had isolated liver disease and are alive in their 4th year of life without liver transplant. Five subjects were detected by newborn screening, with elevated tyrosine or phenylalanine. Consequently, this disease should be considered if elevated tyrosine is identified by newborn screening. Mitochondrial DNA content was below 10% of controls in liver in all but one case and modestly reduced in blood cells. With this paper a total of 39 different mutations in DGUOK have been identified. The most frequent mutation, c.763_c.766dupGATT, occurs in 8 unrelated kindreds. 70% of mutations occur in only one kindred, suggesting full sequencing of this gene is required for diagnosis. The presentation of one case with apparent viral hepatitis, without neurological disease, suggests that this disease should be considered in patients with infantile liver failure regardless of the presence of neurological features or apparent infectious etiology.


Genetics in Medicine | 2015

Diagnosis and management of mitochondrial disease: a consensus statement from the Mitochondrial Medicine Society.

Sumit Parikh; Amy Goldstein; Mary Kay Koenig; Fernando Scaglia; Gregory M. Enns; Russell P. Saneto; Irina Anselm; Bruce H. Cohen; Marni J. Falk; Carol L. Greene; Andrea Gropman; Richard H. Haas; Michio Hirano; Phil G. Morgan; Katherine B. Sims; Mark A. Tarnopolsky; Johan L. K. Van Hove; Lynne A. Wolfe; Salvatore DiMauro

Purpose:The purpose of this statement is to review the literature regarding mitochondrial disease and to provide recommendations for optimal diagnosis and treatment. This statement is intended for physicians who are engaged in diagnosing and treating these patients. Methods:The Writing Group members were appointed by the Mitochondrial Medicine Society. The panel included members with expertise in several different areas. The panel members utilized a comprehensive review of the literature, surveys, and the Delphi method to reach consensus. We anticipate that this statement will need to be updated as the field continues to evolve. Results:Consensus-based recommendations are provided for the diagnosis and treatment of mitochondrial disease.Conclusion:The Delphi process enabled the formation of consensus-based recommendations. We hope that these recommendations will help standardize the evaluation, diagnosis, and care of patients with suspected or demonstrated mitochondrial disease.Genet Med 17 9, 689–701.


The New England Journal of Medicine | 2015

A Phase 3 Trial of Sebelipase Alfa in Lysosomal Acid Lipase Deficiency

Barbara K. Burton; Manisha Balwani; François Feillet; Ivo Barić; T. Andrew Burrow; Carmen Camarena Grande; Mahmut Çoker; Alejandra Consuelo-Sanchez; Patrick Deegan; Maja Di Rocco; Gregory M. Enns; Richard W. Erbe; Fatih Süheyl Ezgü; Can Ficicioglu; Katryn N. Furuya; John P. Kane; Eugen Mengel; Edward G. Neilan; Scott Nightingale; Heidi Peters; Maurizio Scarpa; K Otfried Schwab; Vratislav Smolka; Vassili Valayannopoulos; Marnie Wood; Z. Goodman; Yijun Yang; Stephen Eckert; Sandra Rojas-Caro; Anthony G. Quinn

BACKGROUND Lysosomal acid lipase is an essential lipid-metabolizing enzyme that breaks down endocytosed lipid particles and regulates lipid metabolism. We conducted a phase 3 trial of enzyme-replacement therapy in children and adults with lysosomal acid lipase deficiency, an underappreciated cause of cirrhosis and severe dyslipidemia. METHODS In this multicenter, randomized, double-blind, placebo-controlled study involving 66 patients, we evaluated the safety and effectiveness of enzyme-replacement therapy with sebelipase alfa (administered intravenously at a dose of 1 mg per kilogram of body weight every other week); the placebo-controlled phase of the study was 20 weeks long and was followed by open-label treatment for all patients. The primary end point was normalization of the alanine aminotransferase level. Secondary end points included additional disease-related efficacy assessments, safety, and side-effect profile. RESULTS Substantial disease burden at baseline included a very high level of low-density lipoprotein cholesterol (≥190 mg per deciliter) in 38 of 66 patients (58%) and cirrhosis in 10 of 32 patients (31%) who underwent biopsy. A total of 65 of the 66 patients who underwent randomization completed the double-blind portion of the trial and continued with open-label treatment. At 20 weeks, the alanine aminotransferase level was normal in 11 of 36 patients (31%) in the sebelipase alfa group and in 2 of 30 (7%) in the placebo group (P=0.03), with mean changes from baseline of -58 U per liter versus -7 U per liter (P<0.001). With respect to prespecified key secondary efficacy end points, we observed improvements in lipid levels and reduction in hepatic fat content (P<0.001 for all comparisons, except P=0.04 for triglycerides). The number of patients with adverse events was similar in the two groups; most events were mild and were considered by the investigator to be unrelated to treatment. CONCLUSIONS Sebelipase alfa therapy resulted in a reduction in multiple disease-related hepatic and lipid abnormalities in children and adults with lysosomal acid lipase deficiency. (Funded by Synageva BioPharma and others; ARISE ClinicalTrials.gov number, NCT01757184.).


Molecular Genetics and Metabolism | 2010

Suboptimal outcomes in patients with PKU treated early with diet alone: Revisiting the evidence

Gregory M. Enns; Richard Koch; V. Brumm; E. Blakely; Ruth Suter; Elaina Jurecki

BACKGROUND The National Institute of Health (NIH) published a Consensus Statement on the screening and management of Phenylketonuria (PKU) in 2000. The panel involved in the development of this consensus statement acknowledged the lack of data regarding the potential for more subtle suboptimal outcomes and the need for further research into treatment options. In subsequent years, the approval of new treatment options for PKU and outcome data for patients treated from the newborn period by dietary therapy alone have become available. We hypothesized that a review of the PKU literature since 2000 would provide further evidence related to neurocognitive, psychosocial, and physical outcomes that could serve as a basis for reassessment of the 2000 NIH Consensus Statement. METHODS A systematic review of literature residing in PubMed, Scopus and PsychInfo was performed in order to assess the outcome data over the last decade in diet-alone early-treated PKU patients to assess the need for new recommendations and validity of older recommendations in light of new evidence. RESULTS The majority of publications (140/150) that contained primary outcome data presented at least one suboptimal outcome compared to control groups or standardized norms/reference values in at least one of the following areas: neurocognitive/psychosocial (N=60; 58 reporting suboptimal outcomes); quality of life (N=6; 4 reporting suboptimal outcomes); brain pathology (N=32; 30 reporting suboptimal outcomes); growth/nutrition (N=34; 29 reporting suboptimal outcomes); bone pathology (N=9; 9 reporting suboptimal outcomes); and/or maternal PKU (N=19; 19 reporting suboptimal outcomes). CONCLUSIONS Despite the remarkable success of public health programs that have instituted newborn screening and early introduction of dietary therapy for PKU, there is a growing body of evidence that suggests that neurocognitive, psychosocial, quality of life, growth, nutrition, bone pathology and maternal PKU outcomes are suboptimal. The time may be right for revisiting the 2000 NIH Consensus Statement in order to address a number of important issues related to PKU management, including treatment advancements for metabolic control in PKU, blood Phe variability, neurocognitive and psychological assessments, routine screening measures for nutritional biomarkers, and bone pathology.


American Journal of Medical Genetics | 1999

Apparent cyclophosphamide (cytoxan) embryopathy: A distinct phenotype?

Gregory M. Enns; Elizabeth Roeder; Ruth T. Chan; Zohra Ali-Khan Catts; Victoria A. Cox; Mahin Golabi

Cyclophosphamide (CP) is an alkylating agent widely used in treating cancer and autoimmune disease. CP is classified as a pregnancy risk factor D drug and is teratogenic in animals, but population studies have not conclusively demonstrated teratogenicity in humans. Six isolated reports of prenatally exposed infants with various congenital anomalies exist, but to date no specific phenotype has been delineated. The purpose of this report is to document a new case of in utero CP exposure with multiple congenital anomalies and to establish an apparent CP embryopathy phenotype. The mother had systemic lupus erythematosus and cyclophosphamide exposure in the first trimester. She also took nifedipine, atenolol, clonidine, prednisone, aspirin, and potassium chloride throughout pregnancy. The infant had growth retardation and multiple anomalies including microbrachycephaly, coronal craniosynostosis, hypotelorism, shallow orbits, proptosis, blepharophimosis, small, abnormal ears, unilateral preauricular pit, broad, flat nasal bridge, microstomia, high-arched palate, micrognathia, preaxial upper limb and postaxial lower limb defects consisting of hypoplastic thumbs, and bilateral absence of the 4th and 5th toes. Chromosomes were apparently normal. The reported cases of in utero exposure to cyclosposphamide shared the following manifestations with our patient: growth deficiency, developmental delay, craniosynostosis, blepharophimosis, flat nasal bridge, abnormal ears, and distal limb defects including hypoplastic thumbs and oligodactyly. We conclude that (a) cyclophosphamide is a human teratogen, (b) a distinct phenotype exists, and (c) the safety of CP in pregnancy is in serious question.


Genetics in Medicine | 2014

Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway

Gregory M. Enns; Shashi; Matthew N. Bainbridge; Michael J. Gambello; Farah R. Zahir; T Bast; R Crimian; Kelly Schoch; Julia Platt; Rachel Cox; Jonathan A. Bernstein; M Scavina; Rs Walter; A Bibb; Matthew C. Jones; Madhuri Hegde; Brett H. Graham; Anna C. Need; A Oviedo; Christian P. Schaaf; Sean M. Boyle; Atul J. Butte; Ron Chen; Michael J. Clark; Rajini Haraksingh; Tina M. Cowan; Ping He; Sylvie Langlois; Huda Y. Zoghbi; Michael Snyder

Purpose:The endoplasmic reticulum–associated degradation pathway is responsible for the translocation of misfolded proteins across the endoplasmic reticulum membrane into the cytosol for subsequent degradation by the proteasome. To define the phenotype associated with a novel inherited disorder of cytosolic endoplasmic reticulum–associated degradation pathway dysfunction, we studied a series of eight patients with deficiency of N-glycanase 1.Methods:Whole-genome, whole-exome, or standard Sanger sequencing techniques were employed. Retrospective chart reviews were performed in order to obtain clinical data.Results:All patients had global developmental delay, a movement disorder, and hypotonia. Other common findings included hypolacrima or alacrima (7/8), elevated liver transaminases (6/7), microcephaly (6/8), diminished reflexes (6/8), hepatocyte cytoplasmic storage material or vacuolization (5/6), and seizures (4/8). The nonsense mutation c.1201A>T (p.R401X) was the most common deleterious allele.Conclusion:NGLY1 deficiency is a novel autosomal recessive disorder of the endoplasmic reticulum–associated degradation pathway associated with neurological dysfunction, abnormal tear production, and liver disease. The majority of patients detected to date carry a specific nonsense mutation that appears to be associated with severe disease. The phenotypic spectrum is likely to enlarge as cases with a broader range of mutations are detected.Genet Med 16 10, 751–758.

Collaboration


Dive into the Gregory M. Enns's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce H. Cohen

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marni J. Falk

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy Goldstein

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Anthony G. Quinn

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge