Curtis J. Seaman
Colorado State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Curtis J. Seaman.
Bulletin of the American Meteorological Society | 2013
Donald W. Hillger; Thomas J. Kopp; Thomas F. Lee; Daniel T. Lindsey; Curtis J. Seaman; Steven D. Miller; Jeremy E. Solbrig; Stanley Q. Kidder; Scott Bachmeier; Tommy Jasmin; Tom Rink
The Suomi National Polar-Orbiting Partnership (NPP) satellite was launched on 28 October 2011, heralding the next generation of operational U.S. polar-orbiting satellites. It carries the Visible– Infrared Imaging Radiometer Suite (VIIRS), a 22-band visible/infrared sensor that combines many of the best aspects of the NOAA Advanced Very High Resolution Radiometer (AVHRR), the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), and the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. VIIRS has nearly all the capabilities of MODIS, but offers a wider swath width (3,000 versus 2,330 km) and much higher spatial resolution at swath edge. VIIRS also has a day/night band (DNB) that is sensitive to very low levels of visible light at night such as those produced by moonlight reflecting off low clouds, fog, dust, ash plumes, and snow cover. In addition, VIIRS detects light emissions from cities, ships, oil flares, and ...
Journal of Applied Meteorology and Climatology | 2013
Yoo-Jeong Noh; Curtis J. Seaman; Thomas H. Vonder Haar; Guosheng Liu
AbstractThe vertical distribution of liquid and ice water content and their partitioning is studied using 34 cases of in situ measured microphysical properties in midlatitude mixed-phase clouds, with liquid water path ranging from near zero to ~248 g m−2, total water path ranging from near zero to ~562 g m−2, and cloud-top temperature ranging from −2° to −38°C. The 34 profiles were further divided into three cloud types depending on their vertical extents and altitudes. It is found that both the vertical distribution of liquid water within a cloud and the liquid water fraction (of total condensed water) as a function of temperature or relative position in a cloud layer are cloud-type dependent. In particular, it is found that the partitioning between liquid and ice water for midlevel shallow clouds is relatively independent on the vertical position within the cloud while it clearly depends on cloud mean temperature. For synoptic snow clouds, however, liquid water fraction increases with the decrease of al...
Remote Sensing | 2015
William C. Straka; Curtis J. Seaman; Kimberly E. Baugh; Kathleen Cole; Eric Stevens; Steven D. Miller
Maritime ships operating on-board illumination at night appear as point sources of light to highly sensitive low-light imagers on-board environmental satellites. Unlike city lights or lights from offshore gas platforms, whose locations remain stationary from one night to the next, lights from ships typically are ephemeral. Fishing boat lights are most prevalent near coastal cities and along the thermal gradients in the open ocean. Maritime commercial ships also operate lights that can be detected from space. Such observations have been made in a limited way via U.S. Department of Defense satellites since the late 1960s. However, the Suomi National Polar-orbiting Partnership (S-NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers a vastly improved ability for users to observe commercial shipping in remote areas such as the Arctic. Owing to S-NPP’s polar orbit and the DNB’s wide swath (~3040 km), the same location in Polar Regions can be observed for several successive passes via overlapping swaths—offering a limited ability to track ship motion. Here, we demonstrate the DNB’s improved ability to monitor ships from space. Imagery from the DNB is compared with the heritage low-light sensor, the Operational Linescan System (OLS) on board the Defense Meteorological Support Program (DMSP) satellites, and is evaluated in the context of tracking individual ships in the Polar Regions under both moonlit and moonless conditions. In a statistical sense, we show how DNB observations of ship lights in the East China Sea can be correlated with seasonal fishing activity, while also revealing compelling structures related to regional fishery agreements established between various nations.
Bulletin of the American Meteorological Society | 2016
Steven D. Miller; Timothy L. Schmit; Curtis J. Seaman; Daniel T. Lindsey; Mathew M. Gunshor; Richard A. Kohrs; Yasuhiko Sumida; Donald W. Hillger
AbstractIn 1967, at the dawn of the satellite era, the Applications Technology Satellite 3 (ATS-3) provided the first full-disk “true color” images of Earth. With its depiction of blue oceans, golden deserts, and green forestlands beneath white clouds, the imagery captured the iconic Blue Marble in a way that resonates strongly with human perception. After ATS-3, the standard fare of geostationary satellites entailed a single visible band with additional infrared spectral channels. While single-band visible satisfied the basic user requirements of daytime imagery, the loss of true-color capability and its inherent capability to distinguish myriad atmospheric and surface features via coloration left a notable void. Nearly half a century later, with the launch of Japan’s Himawari-8 in October 2014, there is once again a geostationary sensor—the Advanced Himawari Imager (AHI)—containing the multispectral visible bands required notionally for true color. However, it soon became apparent that AHI’s “green” ban...
Journal of Geophysical Research | 2014
Donald W. Hillger; Curtis J. Seaman; Calvin Liang; Steven D. Miller; Daniel T. Lindsey; Thomas J. Kopp
The Visible Infrared Imaging Radiometer Suite (VIIRS) combines the best aspects of both civilian and military heritage instrumentation. VIIRS has improved capabilities over its predecessors: a wider swath width and much higher spatial resolution at swath edge. The VIIRS day-night band (DNB) is sensitive to very low levels of visible light and is capable of detecting low clouds, land surface features, and sea ice at night, in addition to light emissions from both man-made and natural sources. Imagery from the Suomi National Polar-orbiting Partnership (Suomi NPP) satellite has been in the checkout process since its launch on 28 October 2011. The ongoing evaluation of VIIRS Imagery helped resolve several imagery-related issues, including missing radiance measurements. In particular, near-constant contrast imagery, derived from the DNB, had a large number of issues to overcome, including numerous missing or blank-fill images and a stray light leakage problem that was only recently resolved via software fixes. In spite of various sensor issues, the VIIRS DNB has added tremendous operational and research value to Suomi NPP. Remarkably, it has been discovered to be sensitive enough to identify clouds even in very low light new moon conditions, using reflected light from the Earths airglow layer. Impressive examples of the multispectral imaging capabilities are shown to demonstrate its applications for a wide range of operational users. Future members of the Joint Polar Satellite System constellation will also carry and extend the use of VIIRS. Imagery evaluation will continue with these satellites to ensure the quality of imagery for end users.
Journal of Atmospheric and Oceanic Technology | 2017
Yoo-Jeong Noh; John M. Forsythe; Steven D. Miller; Curtis J. Seaman; Yue Li; Andrew K. Heidinger; Daniel T. Lindsey; Matthew A. Rogers; Philip T. Partain
AbstractKnowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records, produced operationally as part of the Suomi–National Polar-Orbiting Partnership (SNPP) and the forthcoming Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating cloud geometric thickness (CGT) to CTH and CWP. The semiem...
Journal of Atmospheric and Oceanic Technology | 2017
Curtis J. Seaman; Yoo-Jeong Noh; Steven D. Miller; Andrew K. Heidinger; Daniel T. Lindsey
AbstractThe operational VIIRS cloud-base height (CBH) product from the Suomi–National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2–3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2...
Remote Sensing | 2015
Donald W. Hillger; Tom Kopp; Curtis J. Seaman; Steven D. Miller; Daniel T. Lindsey; Eric Stevens; Jeremy E. Solbrig; William C. Straka; Melissa Kreller; Arunas P. Kuciauskas; Amanda Terborg
Visible/Infrared Imaging Radiometer Suite (VIIRS) Imagery from the Suomi National Polar-orbiting Partnership (S-NPP) satellite is the finest spatial resolution (375 m) multi-spectral imagery of any operational meteorological satellite to date. The Imagery environmental data record (EDR) has been designated as a Key Performance Parameter (KPP) for VIIRS, meaning that its performance is vital to the success of a series of Joint Polar Satellite System (JPSS) satellites that will carry this instrument. Because VIIRS covers the high-latitude and Polar Regions especially well via overlapping swaths from adjacent orbits, the Alaska theatre in particular benefits from VIIRS more than lower-latitude regions. While there are no requirements that specifically address the quality of the EDR Imagery aside from the VIIRS SDR performance requirements, the value of VIIRS Imagery to operational users is an important consideration in the Cal/Val process. As such, engaging a wide diversity of users constitutes a vital part of the Imagery validation strategy. The best possible image quality is of utmost importance. This paper summarizes the Imagery Cal/Val Team’s quality assessment in this context. Since users are a vital component to the validation of VIIRS Imagery, specific examples of VIIRS imagery applied to operational needs are presented as an integral part of the post-checkout Imagery validation.
Bulletin of the American Meteorological Society | 2013
Curtis J. Seaman; Steven D. Miller
It has been found that the day/night band of the Visible Infrared Imaging Radiometer Suite is capable of observing rapid motions of the aurora. The images that led to this discovery are shown. Shifts in the apparent position of the aurora boundary between consecutive scans of the instrument, which occur ~1.79 s apart, allow the cross-track relative speed of the aurora to be calculated. The physical basis for these observations and the method for determining the speed of auroral motions are discussed. These new satellite observations compare favorably with ground-based measurements presented in previous studies.
Journal of Geophysical Research | 2011
Yoo-Jeong Noh; Curtis J. Seaman; Thomas H. Vonder Haar; David Hudak; Peter Rodriguez
Collaboration
Dive into the Curtis J. Seaman's collaboration.
Cooperative Institute for Meteorological Satellite Studies
View shared research outputs