Cynthia A. Parrish
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cynthia A. Parrish.
ACS Medicinal Chemistry Letters | 2010
Steven David Knight; Nicholas D. Adams; Joelle L. Burgess; Amita M. Chaudhari; Michael G. Darcy; Carla A. Donatelli; Juan I. Luengo; Ken A. Newlander; Cynthia A. Parrish; Lance H. Ridgers; Martha A. Sarpong; Stanley J. Schmidt; Glenn S. Van Aller; Jeffrey D. Carson; Melody Diamond; Patricia A. Elkins; Christine M. Gardiner; Eric Garver; Seth Gilbert; Richard R. Gontarek; Jeffrey R. Jackson; Kevin L. Kershner; Lusong Luo; Kaushik Raha; Christian S. Sherk; Chiu-Mei Sung; David Sutton; Peter J. Tummino; Ronald Wegrzyn; Kurt R. Auger
Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.
Journal of Medicinal Chemistry | 2010
Nicholas D. Adams; Jerry L. Adams; Joelle L. Burgess; Amita M. Chaudhari; Robert A. Copeland; Carla A. Donatelli; David H. Drewry; Kelly E. Fisher; Toshihiro Hamajima; Mary Ann Hardwicke; William F. Huffman; Kristin K. Koretke-Brown; Zhihong V. Lai; Octerloney B. McDonald; Hiroko Nakamura; Ken A. Newlander; Catherine A. Oleykowski; Cynthia A. Parrish; Denis R. Patrick; Ramona Plant; Martha A. Sarpong; Kosuke Sasaki; Stanley J. Schmidt; Domingos J. Silva; David Sutton; Jun Tang; Christine Thompson; Peter J. Tummino; Jamin C. Wang; Hong Xiang
The Aurora kinases play critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. Selective inhibitors may provide a new therapy for the treatment of tumors with Aurora kinase amplification. Herein we describe our lead optimization efforts within a 7-azaindole-based series culminating in the identification of GSK1070916 (17k). Key to the advancement of the series was the introduction of a 2-aryl group containing a basic amine onto the azaindole leading to significantly improved cellular activity. Compound 17k is a potent and selective ATP-competitive inhibitor of Aurora B and C with K(i)* values of 0.38 +/- 0.29 and 1.5 +/- 0.4 nM, respectively, and is >250-fold selective over Aurora A. Biochemical characterization revealed that compound 17k has an extremely slow dissociation half-life from Aurora B (>480 min), distinguishing it from clinical compounds 1 and 2. In vitro treatment of A549 human lung cancer cells with compound 17k results in a potent antiproliferative effect (EC(50) = 7 nM). Intraperitoneal administration of 17k in mice bearing human tumor xenografts leads to inhibition of histone H3 phosphorylation at serine 10 in human colon cancer (Colo205) and tumor regression in human leukemia (HL-60). Compound 17k is being progressed to human clinical trials.
Current Topics in Medicinal Chemistry | 2008
Steven David Knight; Cynthia A. Parrish
Kinesin spindle protein (KSP), a mitotic kinesin responsible for bipolar spindle establishment and maintenance, is currently the target of intense research for the development of novel anticancer therapeutics. Several inhibitors of KSP have progressed into clinical trials and many others are in preclinical development. A majority of these inhibitors are ATP-uncompetitive and bind in an allosteric loop L5 binding pocket, but recently, inhibitors with an alternative mechanism of action (ATP-competitive) have also been identified and characterized. In this review, an update of the clinical trial results with ATP-uncompetitive KSP inhibitors is provided and recent progress in the identification of additional KSP inhibitors is discussed.
Nature Chemical Biology | 2014
Mary Ann Hardwicke; Alan R. Rendina; Shawn P. Williams; Michael L. Moore; Liping Wang; Julie A Krueger; Ramona Plant; Rachel Totoritis; Guofeng Zhang; Jacques Briand; William Burkhart; Kristin K. Brown; Cynthia A. Parrish
Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.
ACS Medicinal Chemistry Letters | 2010
Xiangping Qian; Andrew Mcdonald; Han-Jie Zhou; Nicholas D. Adams; Cynthia A. Parrish; Kevin J. Duffy; Duke M. Fitch; Rosanna Tedesco; Luke W. Ashcraft; Bing Yao; Hong Jiang; Jennifer Kuo Chen Huang; Melchor V. Marin; Carrie E. Aroyan; Jianchao Wang; Seyed Ahmed; Joelle L. Burgess; Amita M. Chaudhari; Carla A. Donatelli; Michael G. Darcy; Lance H. Ridgers; Ken A. Newlander; Stanley J. Schmidt; Deping Chai; Mariela Colón; Michael N. Zimmerman; Latesh Lad; Roman Sakowicz; Stephen Schauer; Lisa Belmont
Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.
Molecular Cancer Therapeutics | 2009
Steven D. Knight; Nicholas D. Adams; Joelle L. Burgess; Amita M. Chaudhari; Michael G. Darcy; Carla A. Donatelli; Ken Newlander; Cynthia A. Parrish; Lance H. Ridgers; Martha A. Sarpong; Stanley J. Schmidt; Glenn S. Van Aller; Jeffrey D. Carson; Patricia A. Elkins; Melody Diamond; Christine M. Gardiner; Eric Garver; Lusong Luo; Kaushik Raha; Chiu-Mei Sung; Peter J. Tummino; Kurt R. Auger; Dashyant Dhanak
Phosphoinositide 3‐kinase (PI3K) is a critical regulator of cell growth and transformation and its signaling pathway is one of the most commonly mutated pathways in human cancer. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of the PI3K/AKT pathway. GSK1059615, our first PI3K clinical compound, progressed to a dose escalation study in patients with refractory malignancies. Following the discovery of GSK1059615, we sought to identify a second inhibitor with improved potency, selectivity, and pharmacokinetics. Key to our approach to achieving the desired levels of PI3K activity was to pursue structure‐based design utilizing crystallography of the more amenable PI3K as a surrogate protein. Following a chemistry lead optimization effort, the pyridylsulfonamide GSK2126458 was identified as a highly potent, orally bioavailable, pan‐PI3K and mTOR inhibitor (PI3K app Ki = 19 pM; mTORC1 app Ki = 180 pM; mTORC2 app Ki = 300 pM). Consistent with potent PI3K and mTORC2 enzyme inhibition, GSK2126458 decreased cellular levels of phosphorylated AKT (BT474 pAKT IC50 = 180 pM) and inhibited cell proliferation in a large panel of cancer cell lines (e.g. BT474 growth IC50 = 2 nM). GSK2126458 showed good exposure in four pre‐clinical animal species and exhibited in vivo activity in both pharmacodynamic and tumor growth efficacy models. GSK2126458 is being evaluated currently in human clinical trials for the treatment of cancer. The discovery, design, and optimization of GSK2126458 and related analogs will be presented. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):C62.
Nature Chemical Biology | 2007
Lusong Luo; Cynthia A. Parrish; Neysa Nevins; Dean E. McNulty; Amita M. Chaudhari; Jeffery D Carson; Valery Sudakin; Antony N. Shaw; Ruth Lehr; Huizhen Zhao; Sharon Sweitzer; Latesh Lad; Kenneth W. Wood; Roman Sakowicz; Roland S. Annan; Pearl S. Huang; Jeffrey R. Jackson; Dashyant Dhanak; Robert A. Copeland; Kurt R. Auger
Journal of Medicinal Chemistry | 2007
Cynthia A. Parrish; Nicholas D. Adams; Kurt R. Auger; Joelle L. Burgess; Jeffrey D. Carson; Amita M. Chaudhari; Robert A. Copeland; Melody Diamond; Carla A. Donatelli; Kevin J. Duffy; Leo F. Faucette; Jeffrey T. Finer; William F. Huffman; Erin D. Hugger; Jeffrey R. Jackson; Steven David Knight; Lusong Luo; Michael L. Moore; Ken A. Newlander; Lance H. Ridgers; Roman Sakowicz; Antony N. Shaw; Chiu-Mei M. Sung; David Sutton; Kenneth W. Wood; Shu-Yun Zhang; Michael N. Zimmerman; Dashyant Dhanak
Archive | 2013
Cynthia A. Parrish
Archive | 2008
Yanhong Feng; Cynthia A. Parrish; Martha A. Sarpong; Domingos J. Silva