Joelle L. Burgess
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joelle L. Burgess.
ACS Medicinal Chemistry Letters | 2010
Steven David Knight; Nicholas D. Adams; Joelle L. Burgess; Amita M. Chaudhari; Michael G. Darcy; Carla A. Donatelli; Juan I. Luengo; Ken A. Newlander; Cynthia A. Parrish; Lance H. Ridgers; Martha A. Sarpong; Stanley J. Schmidt; Glenn S. Van Aller; Jeffrey D. Carson; Melody Diamond; Patricia A. Elkins; Christine M. Gardiner; Eric Garver; Seth Gilbert; Richard R. Gontarek; Jeffrey R. Jackson; Kevin L. Kershner; Lusong Luo; Kaushik Raha; Christian S. Sherk; Chiu-Mei Sung; David Sutton; Peter J. Tummino; Ronald Wegrzyn; Kurt R. Auger
Phosphoinositide 3-kinase α (PI3Kα) is a critical regulator of cell growth and transformation, and its signaling pathway is the most commonly mutated pathway in human cancers. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of PI3K/AKT pathway inhibition. 2,4-Difluoro-N-{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3-pyridinyl}benzenesulfonamide (GSK2126458, 1) has been identified as a highly potent, orally bioavailable inhibitor of PI3Kα and mTOR with in vivo activity in both pharmacodynamic and tumor growth efficacy models. Compound 1 is currently being evaluated in human clinical trials for the treatment of cancer.
ACS Medicinal Chemistry Letters | 2012
Sharad K. Verma; Xinrong Tian; Louis Vincent Lafrance; Celine Duquenne; Dominic Suarez; Kenneth A. Newlander; Stuart P. Romeril; Joelle L. Burgess; Seth W. Grant; James Brackley; Alan P. Graves; Daryl Scherzer; Art Shu; Christine Thompson; Heidi M. Ott; Glenn S. Van Aller; Carl A. Machutta; Elsie Diaz; Yong Jiang; Neil W. Johnson; Steven David Knight; Ryan G. Kruger; Michael T. McCabe; Dashyant Dhanak; Peter J. Tummino; Caretha L. Creasy; William H. Miller
The histone H3-lysine 27 (H3K27) methyltransferase EZH2 plays a critical role in regulating gene expression, and its aberrant activity is linked to the onset and progression of cancer. As part of a drug discovery program targeting EZH2, we have identified highly potent, selective, SAM-competitive, and cell-active EZH2 inhibitors, including GSK926 (3) and GSK343 (6). These compounds are small molecule chemical tools that would be useful to further explore the biology of EZH2.
Journal of Medicinal Chemistry | 2010
Nicholas D. Adams; Jerry L. Adams; Joelle L. Burgess; Amita M. Chaudhari; Robert A. Copeland; Carla A. Donatelli; David H. Drewry; Kelly E. Fisher; Toshihiro Hamajima; Mary Ann Hardwicke; William F. Huffman; Kristin K. Koretke-Brown; Zhihong V. Lai; Octerloney B. McDonald; Hiroko Nakamura; Ken A. Newlander; Catherine A. Oleykowski; Cynthia A. Parrish; Denis R. Patrick; Ramona Plant; Martha A. Sarpong; Kosuke Sasaki; Stanley J. Schmidt; Domingos J. Silva; David Sutton; Jun Tang; Christine Thompson; Peter J. Tummino; Jamin C. Wang; Hong Xiang
The Aurora kinases play critical roles in the regulation of mitosis and are frequently overexpressed or amplified in human tumors. Selective inhibitors may provide a new therapy for the treatment of tumors with Aurora kinase amplification. Herein we describe our lead optimization efforts within a 7-azaindole-based series culminating in the identification of GSK1070916 (17k). Key to the advancement of the series was the introduction of a 2-aryl group containing a basic amine onto the azaindole leading to significantly improved cellular activity. Compound 17k is a potent and selective ATP-competitive inhibitor of Aurora B and C with K(i)* values of 0.38 +/- 0.29 and 1.5 +/- 0.4 nM, respectively, and is >250-fold selective over Aurora A. Biochemical characterization revealed that compound 17k has an extremely slow dissociation half-life from Aurora B (>480 min), distinguishing it from clinical compounds 1 and 2. In vitro treatment of A549 human lung cancer cells with compound 17k results in a potent antiproliferative effect (EC(50) = 7 nM). Intraperitoneal administration of 17k in mice bearing human tumor xenografts leads to inhibition of histone H3 phosphorylation at serine 10 in human colon cancer (Colo205) and tumor regression in human leukemia (HL-60). Compound 17k is being progressed to human clinical trials.
Tetrahedron | 1993
James Francis Callahan; Kenneth A. Newlander; Joelle L. Burgess; Drake S. Eggleston; Andrew J. Nichols; Angela Wong; William F. Huffman
Abstract A novel γ-turn mimetic 2 has been prepared based on retro amide peptide design. Incorporation of this mimetic into linear peptide fibrinogen receptor antagonist 7 (GPIIb/IIIa receptor) affords the opportunity to test models of antagonist pharmacophore.
ACS Medicinal Chemistry Letters | 2015
Hongfang Yang; Patricia F Medeiros; Kaushik Raha; Patricia A. Elkins; Kenneth Lind; Ruth Lehr; Nicholas D. Adams; Joelle L. Burgess; Stanley J. Schmidt; Steven David Knight; Kurt R. Auger; Michael D. Schaber; G. Joseph Franklin; Yun Ding; Jennifer L. DeLorey; Paolo A. Centrella; Sibongile Mataruse; Steven R. Skinner; Matthew A. Clark; John W. Cuozzo; Ghotas Evindar
In the search of PI3K p110α wild type and H1047R mutant selective small molecule leads, an encoded library technology (ELT) campaign against the desired target proteins was performed which led to the discovery of a selective chemotype for PI3K isoforms from a three-cycle DNA encoded library. An X-ray crystal structure of a representative inhibitor from this chemotype demonstrated a unique binding mode in the p110α protein.
ACS Medicinal Chemistry Letters | 2010
Xiangping Qian; Andrew Mcdonald; Han-Jie Zhou; Nicholas D. Adams; Cynthia A. Parrish; Kevin J. Duffy; Duke M. Fitch; Rosanna Tedesco; Luke W. Ashcraft; Bing Yao; Hong Jiang; Jennifer Kuo Chen Huang; Melchor V. Marin; Carrie E. Aroyan; Jianchao Wang; Seyed Ahmed; Joelle L. Burgess; Amita M. Chaudhari; Carla A. Donatelli; Michael G. Darcy; Lance H. Ridgers; Ken A. Newlander; Stanley J. Schmidt; Deping Chai; Mariela Colón; Michael N. Zimmerman; Latesh Lad; Roman Sakowicz; Stephen Schauer; Lisa Belmont
Inhibition of mitotic kinesins represents a novel approach for the discovery of a new generation of anti-mitotic cancer chemotherapeutics. We report here the discovery of the first potent and selective inhibitor of centromere-associated protein E (CENP-E) 3-chloro-N-{(1S)-2-[(N,N-dimethylglycyl)amino]-1-[(4-{8-[(1S)-1-hydroxyethyl]imidazo[1,2-a]pyridin-2-yl}phenyl)methyl]ethyl}-4-[(1-methylethyl)oxy]benzamide (GSK923295; 1), starting from a high-throughput screening hit, 3-chloro-4-isopropoxybenzoic acid 2. Compound 1 has demonstrated broad antitumor activity in vivo and is currently in human clinical trials.
Molecular Cancer Therapeutics | 2009
Steven D. Knight; Nicholas D. Adams; Joelle L. Burgess; Amita M. Chaudhari; Michael G. Darcy; Carla A. Donatelli; Ken Newlander; Cynthia A. Parrish; Lance H. Ridgers; Martha A. Sarpong; Stanley J. Schmidt; Glenn S. Van Aller; Jeffrey D. Carson; Patricia A. Elkins; Melody Diamond; Christine M. Gardiner; Eric Garver; Lusong Luo; Kaushik Raha; Chiu-Mei Sung; Peter J. Tummino; Kurt R. Auger; Dashyant Dhanak
Phosphoinositide 3‐kinase (PI3K) is a critical regulator of cell growth and transformation and its signaling pathway is one of the most commonly mutated pathways in human cancer. The mammalian target of rapamycin (mTOR), a class IV PI3K protein kinase, is also a central regulator of cell growth, and mTOR inhibitors are believed to augment the antiproliferative efficacy of the PI3K/AKT pathway. GSK1059615, our first PI3K clinical compound, progressed to a dose escalation study in patients with refractory malignancies. Following the discovery of GSK1059615, we sought to identify a second inhibitor with improved potency, selectivity, and pharmacokinetics. Key to our approach to achieving the desired levels of PI3K activity was to pursue structure‐based design utilizing crystallography of the more amenable PI3K as a surrogate protein. Following a chemistry lead optimization effort, the pyridylsulfonamide GSK2126458 was identified as a highly potent, orally bioavailable, pan‐PI3K and mTOR inhibitor (PI3K app Ki = 19 pM; mTORC1 app Ki = 180 pM; mTORC2 app Ki = 300 pM). Consistent with potent PI3K and mTORC2 enzyme inhibition, GSK2126458 decreased cellular levels of phosphorylated AKT (BT474 pAKT IC50 = 180 pM) and inhibited cell proliferation in a large panel of cancer cell lines (e.g. BT474 growth IC50 = 2 nM). GSK2126458 showed good exposure in four pre‐clinical animal species and exhibited in vivo activity in both pharmacodynamic and tumor growth efficacy models. GSK2126458 is being evaluated currently in human clinical trials for the treatment of cancer. The discovery, design, and optimization of GSK2126458 and related analogs will be presented. Citation Information: Mol Cancer Ther 2009;8(12 Suppl):C62.
Bioorganic & Medicinal Chemistry Letters | 2000
Dirk A. Heerding; Melanie Abruzzese; Doreen Alberts; Joelle L. Burgess; James Francis Callahan; William F. Huffman; Andrew G. King; Stephen M. LoCastro; Peter DeMarsh; Louis M. Pelus; Joanne S. Takata; Pradip K. Bhatnagar
The activity of a novel series of peptidomimetic hematoregulatory compounds, designed based on a pharmacophore model inferred from the structure activity relationships of a peptide SK&F 107647 (1), is reported. These compounds induce a hematopoietic synergistic factor (HSF) which in turn modulates host defense. The compounds may represent novel therapeutic agents in the area of hematoregulation.
Cancer Research | 2015
Heidi M. Ott; Glenn S. Van Aller; Jessica Ward; BaoChau Le; Cynthia M. Rominger; James J. Foley; Susan Korenchuk; Charles F. McHugh; Michael Butticello; Charles W. Blackledge; James Brackley; Joelle L. Burgess; Celine Duquenne; Neil W. Johnson; Jiri Kasparec; Louis V. LaFrance; Mei Li; Kenneth C. McNulty; Kenneth A. Newlander; Stuart P. Romeril; Stanley J. Schmidt; Mark J. Schulz; Dai-Shi Su; Dominic Suarez; Xinrong Tian; Christopher Carpenter; Juan I. Luengo; Ryan G. Kruger; Steven D. Knight; Michael T. McCabe
The EZH2 histone methyltransferase is frequently mutated in diffuse large B-cell lymphoma leading to increased trimethylation of histone H3 lysine 27 (H3K27me3). Drug discovery efforts have previously identified a pyridone-based chemical series of EZH2 inhibitors that potently and selectively inhibit EZH2 catalytic activity. These compounds are capable of globally decreasing H3K27me3 levels, de-repressing EZH2 target genes, and inducing growth inhibition of many lymphoma cell lines both in cell culture and in vivo. Through medicinal chemistry optimization, we have developed EZH2 inhibitors with significantly improved potency in both biochemical and cellular assays. These compounds exhibit a prolonged enzyme residence time that can be further extended in vitro through the addition of an H3K27me3 peptide. Herein, we report the biochemical and cellular activity of these new EZH2 inhibitors. Citation Format: Heidi Ott, Glenn van Aller, Jessica Ward, BaoChau Le, Cynthia Rominger, James Foley, Susan Korenchuk, Charles McHugh, Michael Butticello, Charles Blackledge, James Brackley, Joelle Burgess, Celine Duquenne, Neil Johnson, Jiri Kasparec, Louis LaFrance, Mei Li, Kenneth McNulty, Kenneth Newlander, Stuart Romeril, Stanley Schmidt, Mark Schulz, Dai-Shi Su, Dominic Suarez, Xinrong Tian, Christopher Carpenter, Juan Luengo, Ryan Kruger, Steven Knight, Michael T. McCabe. A potent EZH2 inhibitor exhibits long residence time and anti-tumor activity. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 5379. doi:10.1158/1538-7445.AM2015-5379
Cancer Research | 2012
Sharad K. Verma; Louis V. LaFrance; Xinrong Tian; Ken Newlander; Celine Duquenne; Dominic Suarez; Steven D. Knight; Joelle L. Burgess; James Brackley; Neil W. Johnson; Alan P. Graves; Mark Mellinger; Stuart P. Romeril; Seth W. Grant; Daryl Scherzer; Art Shu; Caretha L. Creasy; Ryan G. Kruger; Elsie Diaz; BaoChau Le; Christine Thompson; Heidi Morgan-Ott; Michael T. McCabe; Charles F. McHugh; William Henry Miller; Peter J. Tummino; Dash Dhanak
The histone methyltransferases are a group of enzymes which catalyze the transfer of a methyl group from the co-factor S-Adenosylmethionine (SAM) to the lysine and arginine residues of histone tails. This post-translational modification is a key event in maintaining gene expression patterns. In recent years, the relationships between aberrant histone methylation patterns and cancer progression have been recognized. These developments, along with an improved understanding of the underlying structural biology, have made histone methyltransferases highly attractive targets for therapeutic intervention. The histone lysine methyltransferase EZH2 (Enhancer of Zeste Homolog 2) is frequently over-expressed in a wide variety of cancerous tissues. There is a strong correlation between overexpression of EZH2 and aberrant transcriptional signaling in cells, ultimately resulting in poor clinical prognosis. Inhibition of EZH2 is expected to alter transcriptional expression and ultimately lead to an improved clinical outcome. This presentation will describe medicinal chemistry efforts in the development of highly potent and selective small molecule inhibitors of EZH2. The synthesis, SAR, and identification of a clinical candidate will be discussed. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 2939. doi:1538-7445.AM2012-2939