Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cynthia B. Thomas is active.

Publication


Featured researches published by Cynthia B. Thomas.


Experimental Cell Research | 1984

DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins.

Rod Balhorn; Sue Weston; Cynthia B. Thomas; Andrew J. Wyrobek

A comparison of the protein compositions of mouse late-step spermatids and cauda epididymal sperm has revealed that the relative distribution of the two amino acid sequence variants of mouse protamine differ markedly in spermatids and sperm. Sonication-resistant spermatids contain the two variants in a ratio of 1:1, while the ratio of these two proteins in cauda epididymal sperm is approx. 2:1. Labeling studies in vivo have shown that this difference is due, in part, to an asynchrony in the time of synthesis of the two protamine variants. Both proteins are synthesized in late-step spermatids, but synthesis of the tyrosine variant in sperm chromatin begins approximately one day before synthesis of the more predominant histidine variant. Analyses of the time of synthesis of protamine and the four transition proteins in late-step spermatids allowed us to estimate the spermatid stage in which these proteins are deposited on DNA and relate these events to the onset of sonication resistance in maturing spermatids. These results indicate that: (1) synthesis and deposition of protamine begins coincident with the onset of sonication resistance in early step 12 spermatids; (2) protamine deposition is complete by mid-step 15; and (3) synthesis of the transition proteins occurs coincident with protamine synthesis.


Mutation Research\/dnaging | 1995

Impact of age and environment on somatic mutation at the hprt gene of T lymphocytes in humans.

Irene M. Jones; Cynthia B. Thomas; Bethany Tucker; Claudia Thompson; Pavel Pleshanov; Irena Vorobtsova; Dan H. Moore

Analysis of two human populations for dependence of somatic mutation on age has revealed both similarities and differences. The studies performed employed peripheral blood lymphocytes and measured the efficiency with which these cells form clones in vitro (cloning efficiency, CE) and the frequency of cells with inactivating mutations of the hypoxanthine phosphoribosyltransferase gene (mutant frequency, MF). The people studied were between 19 and 64 years of age. In one population, composed of 78 never smokers and 140 current smokers from the United States (US), both CE and MF were dependent on age: CE declined with age (p = 0.005); MF increased 0.15 per 10(6) cells per year of age for nonsmokers (p < 0.001) and at 1.3 times that rate for smokers (p = 0.01). In the second population, 80 people of unknown smoking status from Russia, the increase in MF per year was even greater, 2.5 times that of the US nonsmokers (p = 0.001) but the dependence of CE on age was the same as for the US population (p = 0.043). Because the increase of MF of the Russians with age is 2-fold greater than that of the US smokers, the intensity of smoking and/or other environmental exposures, or the susceptibility to these exposures, must account for the difference in age dependent MF increase, not the proportion of Russians that are smokers. Differences in the lymphocyte subpopulations that survived the longer transit from Russia may have contributed to the observed differences in MF. However, overall, the mutant frequency results suggest that the Russians were chronically exposed to higher levels of agents that induce somatic mutation and that, on an age adjusted basis, the Russia population studied is at increased risk for health consequences from accumulated genetic damage.


Radiation Research | 2002

Three Somatic Genetic Biomarkers and Covariates in Radiation-Exposed Russian Cleanup Workers of the Chernobyl Nuclear Reactor 6-13 Years after Exposure

Irene M. Jones; Heather Galick; Paula Kato; Richard G. Langlois; Mortimer L. Mendelsohn; Gloria A. Murphy; Pavel Pleshanov; Marilyn J. Ramsey; Cynthia B. Thomas; James D. Tucker; Ludmila Tureva; Irina Vorobtsova; David O. Nelson

Abstract Jones, I. M., Galick, H., Kato, P., Langlois, R. G., Mendelsohn, M. L., Murphy, G. A., Pleshanov, P., Ramsey, M. J., Thomas, C. B., Tucker, J. D., Tureva, L., Vorobstova, I. and Nelson, D. O. Three Somatic Genetic Biomarkers and Covariates in Radiation-Exposed Russian Cleanup Workers of the Chernobyl Nuclear Reactor 6–13 Years after Exposure. Radiat. Res. 158, 424–442 (2002). Three somatic mutation assays were evaluated in men exposed to low-dose, whole-body, ionizing radiation. Blood samples were obtained between 1992 and 1999 from 625 Russian Chernobyl cleanup workers and 182 Russian controls. The assays were chromosome translocations in lymphocytes detected by FISH, hypoxanthine phosphoribosyltransferase (HPRT) mutant frequency in lymphocytes by cloning, and flow cytometic assay for glycophorin A (GPA) variant frequency of both deletion (N/Ø) and recombination (N/N) events detected in erythrocytes. Over 30 exposure and lifestyle covariates were available from questionnaires. Among the covariates evaluated, some increased (e.g. age, smoking) and others decreased (e.g. date of sample) biomarker responses at a magnitude comparable to Chernobyl exposure. When adjusted for covariates, exposure at Chernobyl was a statistically significant factor for translocation frequency (increase of 30%, 95% CI of 10%–53%, P = 0.002) and HPRT mutant frequency (increase of 41%, 95% CI of 19%–66%, P < 0.001), but not for either GPA assay. The estimated average dose for the cleanup workers based on the average increase in translocations was 9.5 cGy. Translocation analysis is the preferred biomarker for low-dose radiation dosimetry given its sensitivity, relatively few covariates, and dose–response data. Based on this estimated dose, the risk of exposure-related cancer is expected to be low.


PLOS ONE | 2009

Decoupling Internalization, Acidification and Phagosomal-Endosomal/lysosomal Fusion during Phagocytosis of InlA Coated Beads in Epithelial Cells

Craig D. Blanchette; Youn-Hi Woo; Cynthia B. Thomas; Nan Shen; Todd Sulchek; Amy L. Hiddessen

Background Phagocytosis has been extensively examined in ‘professional’ phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in ‘non-professional’ phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Methodology/Principal Findings Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. Conclusions/Significance Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23–32 min, 3–4 min and 74–120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply require fluorophore conjugation to a particle of interest, such as a pathogen or mimetic, in combination with common cell labeling dyes. As such, these methods hold promise for future measurements of receptor-mediated internalization in other cell systems, e.g. pathogen-host systems.


PLOS ONE | 2014

Evaluation of Nanolipoprotein Particles (NLPs) as an In Vivo Delivery Platform

Nicholas O. Fischer; Dina Weilhammer; Alexis D. Dunkle; Cynthia B. Thomas; Mona H. Hwang; Michele Corzett; Cheri Lychak; Wasima Mayer; Salustra S. Urbin; Nicole M. Collette; Jiun Chiun Chang; Gabriela G. Loots; Amy Rasley; Craig D. Blanchette

Nanoparticles hold great promise for the delivery of therapeutics, yet limitations remain with regards to the use of these nanosystems for efficient long-lasting targeted delivery of therapeutics, including imparting functionality to the platform, in vivo stability, drug entrapment efficiency and toxicity. To begin to address these limitations, we evaluated the functionality, stability, cytotoxicity, toxicity, immunogenicity and in vivo biodistribution of nanolipoprotein particles (NLPs), which are mimetics of naturally occurring high-density lipoproteins (HDLs). We found that a wide range of molecules could be reliably conjugated to the NLP, including proteins, single-stranded DNA, and small molecules. The NLP was also found to be relatively stable in complex biological fluids and displayed no cytotoxicity in vitro at doses as high as 320 µg/ml. In addition, we observed that in vivo administration of the NLP daily for 14 consecutive days did not induce significant weight loss or result in lesions on excised organs. Furthermore, the NLPs did not display overt immunogenicity with respect to antibody generation. Finally, the biodistribution of the NLP in vivo was found to be highly dependent on the route of administration, where intranasal administration resulted in prolonged retention in the lung tissue. Although only a select number of NLP compositions were evaluated, the findings of this study suggest that the NLP platform holds promise for use as both a targeted and non-targeted in vivo delivery vehicle for a range of therapeutics.


PLOS ONE | 2013

Effect of Age and Cytoskeletal Elements on the Indentation-Dependent Mechanical Properties of Chondrocytes

Nadeen O. Chahine; Craig D. Blanchette; Cynthia B. Thomas; Jeffrey Lu; Dominik R. Haudenschild; Gabriela G. Loots

Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15–2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 1999

Elevated frequencies of hypoxanthine phosphoribosyltransferase lymphocyte mutants are detected in Russian liquidators 6 to 10 years after exposure to radiation from the Chernobyl nuclear power plant accident.

Cynthia B. Thomas; David O. Nelson; Pavel Pleshanov; Irina Vorobstova; Ludmila Tureva; Ronald H. Jensen; Irene M. Jones

This study was conducted to determine whether the frequency of hypoxanthine phosphoribosyltransferase (HPRT) deficient lymphocyte mutants would detect an effect of radiation exposure in a population of Russians who were exposed to low levels of radiation while working in 1986 and 1987 as liquidators cleaning up after the Chernobyl nuclear power reactor accident. The HPRT lymphocyte cloning assay was performed on peripheral blood lymphocytes collected between 1992 and 1996 from 142 liquidators and 66 Russian controls, and between 1989 and 1993 from 231 American controls. Russian and American controls were not significantly different for either cloning efficiency or mutant frequency (MF); inclusion of both sets of controls in the analysis increased the ability to detect a Chernobyl exposure effect in the liquidators. After adjusting for age and smoking, the results revealed no significant difference in cloning efficiency of Chernobyl liquidators relative to Russian controls but a significant, 24% increase in liquidator HPRT mutant frequency over Russian controls (90% confidence interval was 7% to 45% increase). The analytical method also accounted for differences in precision of the individual estimates of log CE and log MF and accommodated for outliers. The increase in HPRT mutant frequency of liquidators is an attribute of the exposed population as a whole rather than of individuals. These results demonstrate that, under appropriate circumstances, the HPRT specific locus mutation assay of peripheral blood lymphocytes can be used to detect a semi-acute, low dose radiation exposure of a population, even 6 to 10 years after the exposure.


Mutation Research | 1999

Total gene deletions and mutant frequency of the HPRT gene as indicators of radiation exposure in Chernobyl liquidators.

Irene M. Jones; Cynthia B. Thomas; Kari Haag; Pavel Pleshanov; Irina Vorobstova; Ludmila Tureva; David O. Nelson

This study was conducted to determine the utility of deletion spectrum and mutant frequency (MF) of the hypoxanthine phosphoribosyl transferase gene (HPRT) as indicators of radiation exposure in Russian Liquidators who served in 1986 or 1987 in the clean up effort following the nuclear power plant accident at Chernobyl. HPRT MF was determined using the cloning assay for 117 Russian Controls and 122 Liquidators whose blood samples were obtained between 1991 and 1998. Only subjects from whom mutants were obtained for deletion analysis are included. Multiplex PCR analysis was performed on cell extracts of 1080 thioguanine resistant clones from Controls and 944 clones from Liquidators. Although the deletion spectra of Liquidators and Controls were similar overall, the Liquidator deletion spectrum was heterogeneous over time. Most notable, the proportion of total gene deletions was higher in 1991-1992 Liquidators than in Russian Controls (chi 2 = 10.5, p = 0.001) and in 1993-1994 Liquidators (chi 2 = 8.3, p = 0.004), and was marginally elevated relative to 1995-1996 Liquidators (chi 2 = 3.3, p = 0.07). This type of mutations has been highly associated with radiation exposure. Total gene deletions were not increased after 1992. Band shift mutations were also increased in the 1991-1992 Liquidators but were associated with increased MF of both Liquidators and Controls (p = 0.009), not with increased MF in 1991-1992 Liquidators (p = 0.7), and hence are not believed to be associated with radiation exposure. Regression analysis demonstrated that relative to Russian Controls HPRT MF was elevated in Liquidators overall when adjusted for age and smoking status (37%, p = 0.0001), and also was elevated in Liquidators sampled in 1991-1992 (72%, p = 0.0076), 1993-1994 (22%, p = 0.037), and 1995-1996 (62%, p = 0.0001). In summary, HPRT MF was found to be the more sensitive and persistent indicator of radiation exposure, but the specificity of total gene deletions led to detection of probable heterogeneity of radiation exposure within the exposed population.


Cancer Epidemiology, Biomarkers & Prevention | 2008

No Evidence for Differences in DNA Damage Assessed before and after a Cancer Diagnosis

Parveen Bhatti; Alice J. Sigurdson; Cynthia B. Thomas; Allison Iwan; Bruce H. Alexander; Diane Kampa; Laura Bowen; Michele M. Doody; Irene M. Jones

The overwhelming majority of studies that have found increased cancer risk associated with functional deficits in DNA repair used a case-control design, in which measurements were made after cancer diagnosis. However, there are concerns about whether the cancer itself or cancer treatment affected the conclusions (reverse causation bias). We assessed the effect of cancer diagnosis among 26 breast cancer controls who had blood collected during 2001 to 2003 and again in 2005 to 2006 after being diagnosed with cancer. Using the alkaline comet assay, we quantified DNA damage in untreated lymphoblastoid cell lines. Comet distributed moment, olive tail moment, percentage of DNA in tail, and comet tail length were summarized as the geometric mean of 100 cells. For comet distributed moment, olive tail moment, tail DNA, and tail length, the proportions of women with before diagnosis values higher than after diagnosis were 65%, 50%, 50%, and 46%, respectively. We found no significant differences in the before or after diagnosis mean comet values. Median cut-points were determined from the before diagnosis distribution, and we used conditional logistic regression to calculate odds ratios (OR) and upper 95% bounds of the confidence intervals. ORs ranged from 0.6 to 0.9 with upper confidence interval bounds of 1.9 and 2.6, meaning biased ORs above 2.6 are unlikely. We found no evidence that reverse causation bias is an important concern in case-control studies using the comet assay applied to cell lines collected after cancer diagnosis. More work is needed to characterize the effect of cancer diagnosis on other phenotypic assays. (Cancer Epidemiol Biomarkers Prev 2008;17(4):990–4)


Mutation Research | 2002

Induction and decline of HPRT mutants and deletions following a low dose radiation exposure at Chernobyl

Cynthia B. Thomas; David O. Nelson; Pavel Pleshanov; Irene M. Jones

This study was conducted to evaluate the ability of mutation in the hypoxanthine-phosphoribosyltransferase gene (HPRT) to detect radiation-induced mutation in lymphocytes of Russian Chernobyl Clean-up workers, particularly as a function of time after exposure. It is part of a multi-endpoint study comparing HPRT mutation with chromosome translocation and glycophorin A mutation [Radiat. Res. 148 (1997) 463], and extends an earlier report on HPRT [Mutat. Res. 431 (1999) 233] by including data from all 9 years of our study (versus the first 6 years) and analysis of deletion size. Blood samples were collected from 1991 to 1999. HPRT mutant frequency (MF) as determined by the cloning assay was elevated 16% in Clean-up workers (N=300, the entire group minus one outlier) compared to Russian Controls (N=124) when adjusted for age and smoking status (P=0.028). Since exposures occurred over a short relative to the long sampling period, the year of sampling corresponded roughly to the length of time since exposure (correlation coefficient=0.94). When date of blood sample was considered, Control MF was not time dependent. Clean-up worker MF was estimated to be 47% higher than Control MF in 1991 (P=0.004) and to decline 4.4% per year thereafter (P=0.03). A total of 1123 Control mutants and 2799 Clean-up worker mutants were analyzed for deletion type and size by PCR assay for retention of HPRT exons and flanking markers on the X chromosome. There was little difference between the overall deletion spectra of Clean-up workers and Controls. However, there was a decline in the average size of deletions of Clean-up workers as time after exposure at Chernobyl increased from 6 to 13 years (P< or =0.05). The results illustrate the sensitivity of HPRT somatic mutation as a biomarker for populations with low dose radiation exposure, and the dependence of this sensitivity on time elapsed since radiation exposure.

Collaboration


Dive into the Cynthia B. Thomas's collaboration.

Top Co-Authors

Avatar

Irene M. Jones

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alice J. Sigurdson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Gabriela G. Loots

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Pavel Pleshanov

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Claudia Thompson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Craig D. Blanchette

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dan H. Moore

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martin Vanderlaan

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michele M. Doody

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge