Cynthia D. Cooper
Washington State University Vancouver
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cynthia D. Cooper.
Journal of Cell Science | 2006
Paul D. Lampe; Cynthia D. Cooper; Timothy J. King; Janis M. Burt
The functional consequences of Connexin43 (Cx43) phosphorylation remain largely unexplored. Using an antibody that specifically recognizes Cx43 phosphorylated at serine residues 325, 328 and/or 330 (pS325/328/330-Cx43), we show that labeling of this form of Cx43 as well as of total Cx43 is restricted to the intercalated disk region of normal ventricular tissue. In ischemic heart, significant relocalization of total Cx43 to the lateral edges of myocytes was evident; however pS325/328/330-Cx43 remained predominately at the intercalated disk. Western blots indicated a eightfold decrease in pS325/328/330-Cx43 in ischemic tissue. Peptide-binding- and competition-experiments indicated that our antibody mainly detected Cx43 phosphorylated at S328 and/or S330 in heart tissue. To evaluate how this change in Cx43 phosphorylation contributes to ischemia-induced downregulation of intercellular communication, we stably transfected Cx43-/- cells with a Cx43 construct in which serine residues 325, 328 and 330 had been mutated to alanine (Cx43-TM). Cx43-TM was not efficiently processed to isoforms that have been correlated with gap junction assembly. Nevertheless, Cx43-TM cells were electrically coupled, although development of coupling was delayed. Fully opened channels were only rarely observed in Cx43-TM cells, and Lucifer-Yellow-dye-coupling was significantly reduced compared with wild-type cells. These data suggest that phosphorylation of Cx43 at serine residues 325, 328 and/or 330 influences channel permselectivity and regulates the efficiency of gap junction assembly.
Seminars in Cell & Developmental Biology | 2009
Cynthia D. Cooper; David W. Raible
Black pigment cells, or melanocytes, are the major contributing cells to pigmentation in vertebrate organisms. Although the function of these cells is distinct depending on the organism, the events involved in their development are remarkably similar. Here, we review the mechanisms involved in the early development of melanocytes from neural crest, many of which are conserved in organisms as diverse as zebrafish, birds and humans. We also discuss recent studies that provide further insight into how melanocyte differentiation is achieved and maintained.
Pigment Cell & Melanoma Research | 2014
Alisha J. Beirl; Tor Linbo; Marea J. Cobb; Cynthia D. Cooper
We characterized a zebrafish mutant that displays defects in melanin synthesis and in the differentiation of melanophores and iridophores of the skin and retinal pigment epithelium. Positional cloning and candidate gene sequencing link this mutation to a 410‐kb region on chromosome 6, containing the oculocutaneous albinism 2 (oca2) gene. Quantification of oca2 mutant melanophores shows a reduction in the number of differentiated melanophores compared with wildtype siblings. Consistent with the analysis of mouse Oca2‐deficient melanocytes, zebrafish mutant melanophores have immature melanosomes which are partially rescued following treatment with vacuolar‐type ATPase inhibitor/cytoplasmic pH modifier, bafilomycin A1. Melanophore‐specific gene expression is detected at the correct time and in anticipated locations. While oca2 zebrafish display unpigmented gaps on the head region of mutants 3 days post‐fertilization, melanoblast quantification indicates that oca2 mutants have the correct number of melanoblasts, suggesting a differentiation defect explains the reduced melanophore number. Unlike melanophores, which are reduced in number in oca2 mutants, differentiated iridophores are present at significantly higher numbers. These data suggest distinct mechanisms for oca2 in establishing differentiated chromatophore number in developing zebrafish.
Genome Research | 2015
Matthew J. Lambert; Wayne O. Cochran; Brandon M. Wilde; Kyle G. Olsen; Cynthia D. Cooper
Gene duplication and alternative splicing are important sources of proteomic diversity. Despite research indicating that gene duplication and alternative splicing are negatively correlated, the evolutionary relationship between the two remains unclear. One manner in which alternative splicing and gene duplication may be related is through the process of subfunctionalization, in which an alternatively spliced gene upon duplication divides distinct splice isoforms among the newly generated daughter genes, in this way reducing the number of alternatively spliced transcripts duplicate genes produce. Previously, it has been shown that splice form subfunctionalization will result in duplicate pairs with divergent exon structure when distinct isoforms become fixed in each paralog. However, the effects of exon structure divergence between paralogs have never before been studied on a genome-wide scale. Here, using genomic data from human, mouse, and zebrafish, we demonstrate that gene duplication followed by exon structure divergence between paralogs results in a significant reduction in levels of alternative splicing. In addition, by comparing the exon structure of zebrafish duplicates to the co-orthologous human gene, we have demonstrated that a considerable fraction of exon divergent duplicates maintain the structural signature of splice form subfunctionalization. Furthermore, we find that paralogs with divergent exon structure demonstrate reduced breadth of expression in a variety of tissues when compared to paralogs with identical exon structures and singletons. Taken together, our results are consistent with subfunctionalization partitioning alternatively spliced isoforms among duplicate genes and as such highlight the relationship between gene duplication and alternative splicing.
Developmental Dynamics | 2009
Cynthia D. Cooper; Tor Linbo; David W. Raible
We have investigated the role of foxd3 activity in conjunction with signaling by the kit tyrosine kinase receptor in zebrafish black pigment cell (melanophore) development. As loss‐of‐function of these molecules individually has distinct effects on melanophore number, we have examined the phenotype of double mutants. Individuals with a null mutation in kit have fewer melanophores than wild‐type, with cells lost through death. When kit mutants are injected with foxd3 antisense morpholino oligonucleotides or crossed with a foxd3 zebrafish mutant, they have more melanophores than their uninjected or foxd3+ counterparts. Examination of foxd3 loss‐of‐function in two additional kit mutants that differentially alter kit‐dependent migration and survival indicates a change in melanophore number in survival mutants only. Consistently, TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridinetriphosphate nick end‐labeling) analysis confirms a partial rescue of melanophores from cell death. Ectopic expression of foxd3 indicates that foxd3 promotes early melanophore death only when kit is inactive. Taken together, these data suggest a kit‐dependent role for foxd3 in the regulation of melanophore survival. Developmental Dynamics 238:875–886, 2009.
PLOS ONE | 2013
Lauren F. Clancey; Alisha J. Beirl; Tor Linbo; Cynthia D. Cooper
Here, we characterize a Danio rerio zebrafish pigment cell mutant (melanophore integrity mutant), which displays a defect in maintenance of melanophore and iridophore number. Mapping and candidate gene analysis links the melanophore integrity mutant mutation to the vacuolar protein sorting 11 (vps11w66) gene. Quantification of vps11w66 chromatophores during larval stages suggests a decrease in number as compared to wildtype siblings. TUNEL analysis and treatment with the caspase inhibitor, zVAD-fmk, indicate that vps11w66chromatophore death is caspase independent. Western blot analysis of PARP-1 cleavage patterns in mutant lysates suggests that increases in pH dependent cathepsin activity is involved in the premature chromatophore death observed in vps11w66 mutants. Consistently, treatment with ALLM and Bafilomycin A1 (cathepsin/calpain and vacuolar-type H+-ATPase inhibitors, respectively), restore normal melanophore morphology and number in vps11w66 mutants. Last, LC3B western blot analysis indicates an increase in autophagosome marker, LC3B II in vps11w66 mutants as compared to wildtype control, but not in ALLM or Bafilomycin A1 treated mutants. Taken together, these data suggest that vps11 promotes normal melanophore morphology and survival by inhibiting cathepsin release and/or activity.
Gene | 2014
Matthew J. Lambert; Kyle G. Olsen; Cynthia D. Cooper
In this study we report novel findings regarding the evolutionary relationship between gene duplication and alternative splicing, two processes that increase proteomic diversity. By studying teleost fish, we find that gene duplication followed by exon structure divergence between paralogs, but not gene duplication alone, leads to a significant reduction in alternative splicing, as measured by both the proportion of genes that undergo alternative splicing as well as mean number of transcripts per gene. Additionally, we show that this effect is independent of gene family size and gene function. Furthermore, we provide evidence that the reduction in alternative splicing may be due to the partitioning of ancestral splice forms among the duplicate genes - a form of subfunctionalization. Taken together these results indicate that exon structure evolution subsequent to gene duplication may be a common substitute for alternative splicing.
Developmental Dynamics | 2017
Cynthia D. Cooper
Black pigment cells, melanocytes, arise early during development from multipotent neural crest cells. Melanocytes protect human skin from DNA damaging sunrays and provide color for hair, eyes, and skin. Several disorders and diseases originate from these cells, including the deadliest skin cell cancer, melanoma. Thus, melanocytes are critical for a healthy life and for protecting humans from disease. Due to the ease of visualizing pigment cells through transparent larvae skin and conserved roles for zebrafish melanophore genes to mammalian melanocyte genes, zebrafish larvae offer a biologically relevant model for understanding pigment cell development and disease in humans. This review discusses our current knowledge of melanophore biology and how zebrafish are contributing to improving how diseases of melanocytes are understood and treated in humans. Developmental Dynamics 246:889–896, 2017.
Journal of Biological Chemistry | 2002
Cynthia D. Cooper; Paul D. Lampe
Developmental Biology | 2006
James A. Lister; Cynthia D. Cooper; Kim N. Nguyen; Melinda Modrell; Kelly A. Grant; David W. Raible